Тип датчика мыши. Лазерная или светодиодная мышка? Какая мышка лучше проводная или беспроводная

В этой статье мы рассмотрим принципы работы сенсоров оптических мышей, прольем свет на историю их технологического развития, а также развенчаем некоторые мифы, связанные с оптическими «грызунами».

Кто тебя выдумал…

Привычные для нас сегодня оптические мыши ведут свою родословную с 1999 года, когда в массовой продаже появились первые экземпляры таких манипуляторов от Microsoft, а через некоторое время и от других производителей. До появления этих мышей, да и еще долго после этого, большинство массовых компьютерных «грызунов» были оптомеханическими (перемещения манипулятора отслеживались оптической системой, связанной с механической частью - двумя роликами, отвечавшими за отслеживание перемещения мыши вдоль осей × и Y; эти ролики, в свою очередь, вращались от шарика, перекатывающегося при перемещении мыши пользователем). Хотя встречались и чисто оптические модели мышей, требовавшие для своей работы специального коврика. Впрочем, такие устройства встречались не часто, да и сама идея развития подобных манипуляторов постепенно сошла на нет.

«Вид» знакомых нам нынче массовых оптических мышек, базирующихся на общих принципах работы, был «выведен» в исследовательских лабораториях всемирно известной корпорации Hewlett-Packard. Точнее, в ее подразделении Agilent Technologies, которое только сравнительно недавно полностью выделилось в структуре корпорации НР в отдельную компанию. На сегодняшний день Agilent Technologies, Inc. - монополист на рынке оптических сенсоров для мышей, никакие другие компании такие сенсоры не разрабатывают, кто бы и что не говорил вам об эксклюзивных технологиях IntelliEye или MX Optical Engine . Впрочем, предприимчивые китайцы уже научились «клонировать» сенсоры Agilent Technologies, поэтому, покупая недорогую оптическую мышь, вы вполне можете стать владельцем «левого» сенсора.

Откуда берутся видимые отличия в работе манипуляторов, мы выясним чуть позднее, а пока позвольте приступить к рассмотрению базовых принципов работы оптических мышей, точнее их систем слежения за перемещением.

Как «видят» компьютерные мыши

В этом разделе мы изучим базовые принципы работы оптических систем слежения за перемещением, которые используются в современных манипуляторах типа мышь.

Итак, «зрение» оптическая компьютерная мышь получает благодаря следующему процессу. С помощью светодиода, и системы фокусирующих его свет линз, под мышью подсвечивается участок поверхности. Отраженный от этой поверхности свет, в свою очередь, собирается другой линзой и попадает на приемный сенсор микросхемы - процессора обработки изображений. Этот чип, в свою очередь, делает снимки поверхности под мышью с высокой частотой (кГц). Причем микросхема (назовем ее оптический сенсор) не только делает снимки, но сама же их и обрабатывает, так как содержит две ключевых части: систему получения изображения Image Acquisition System (IAS) и интегрированный DSP процессор обработки снимков.

На основании анализа череды последовательных снимков (представляющих собой квадратную матрицу из пикселей разной яркости), интегрированный DSP процессор высчитывает результирующие показатели, свидетельствующие о направлении перемещения мыши вдоль осей × и Y, и передает результаты своей работы вовне по последовательному порту.

Если мы посмотрим на блок-схему одного из оптических сенсоров, то увидим, что микросхема состоит из нескольких блоков, а именно:

  • основной блок, это, конечно же, Image Processor - процессор обработки изображений (DSP) со встроенным приемником светового сигнала (IAS);
  • Voltage Regulator And Power Control - блок регулировки вольтажа и контроля энергопотребления (в этот блок подается питание и к нему же подсоединен дополнительный внешний фильтр напряжения);
  • Oscillator - на этот блок чипа подается внешний сигнал с задающего кварцевого генератора, частота входящего сигнала порядка пары десятков МГц;
  • Led Cоntrоl - это блок управления светодиодом, с помощью которого подсвечивается поверхность под мышью;
  • Serial Port - блок передающий данные о направлении перемещения мыши вовне микросхемы.

Некоторые детали работы микросхемы оптического сенсора мы рассмотрим чуть далее, когда доберемся к самому совершенному из современных сенсоров, а пока вернемся к базовым принципам работы оптических систем слежения за перемещением манипуляторов.

Нужно уточнить, что информацию о перемещении мыши микросхема оптического сенсора передает через Serial Port не напрямую в компьютер. Данные поступают к еще одной микросхеме-контроллеру, установленной в мыши. Эта вторая «главная» микросхема в устройстве отвечает за реакцию на нажатие кнопок мыши, вращение колеса прокрутки и т.д. Данный чип, в том числе, уже непосредственно передает в ПК информацию о направлении перемещения мыши, конвертируя данные, поступающие с оптического сенсора, в передаваемые по интерфейсам PS/2 или USB сигналы. А уже компьютер, используя драйвер мыши, на основании поступившей по этим интерфейсам информации, перемещает курсор-указатель по экрану монитора.

Именно по причине наличия этой «второй» микросхемы-контроллера, точнее благодаря разным типам таких микросхем, довольно заметно отличались между собой уже первые модели оптических мышей. Если о дорогих устройствах от Microsoft и Logitech слишком плохо отозваться я не могу (хотя и они не были вовсе «безгрешны»), то масса появившихся вслед за ними недорогих манипуляторов вела себя не вполне адекватно. При движении этих мышей по обычным коврикам курсоры на экране совершали странные кульбиты, скакали чуть ли не на пол Рабочего стола, а иногда… иногда они даже отправлялись в самостоятельное путешествие по экрану, когда пользователь совершенно не трогал мышь. Доходило и до того, что мышь могла запросто выводить компьютер из режима ожидания, ошибочно регистрируя перемещение, когда манипулятор на самом деле никто не трогал.

Кстати, если вы до сих пор боретесь с подобной проблемой, то она решается одним махом вот так: выбираем Мой Компьютер > Свойства > Оборудование > Диспетчер устройств > выбираем установленную мышь > заходим в ее «Свойства» > в появившемся окне переходим на закладку «Управление электропитанием» и снимаем галочку с пункта «Разрешить устройству вывод компьютера из ждущего режима» (рис. 4). После этого мышь уже не сможет вывести компьютер из режима ожидания ни под каким предлогом, даже если вы будете пинать ее ногами:)

Итак, причина столь разительного отличия в поведении оптических мышей была вовсе не в «плохих» или «хороших» установленных сенсорах, как до сих пор думают многие. Не верьте, это не более чем бытующий миф. Или фантастика, если вам так больше нравится:) В ведущие себя совершенно по-разному мыши часто устанавливались совершенно одинаковые микросхемы оптических сенсоров (благо, моделей этих чипов было не так уж много, как мы увидим далее). Однако вот, благодаря несовершенным чипам контроллеров, устанавливаемых в оптические мыши, мы имели возможность сильно поругать первые поколения оптических грызунов.

Однако, мы несколько отвлеклись от темы. Возвращаемся. В целом система оптического слежения мышей, помимо микросхемы-сенсора, включает еще несколько базовых элементов. Конструкция включает держатель (Clip) в который устанавливаются светодиод (LED) и непосредственно сама микросхема сенсора (Sensor). Эта система элементов крепится на печатную плату (PCB), между которой и нижней поверхностью мыши (Base Plate) закрепляется пластиковый элемент (Lens), содержащий две линзы (о назначении которых было написано выше).

В собранном виде оптический элемент слежения выглядит как показано выше. Схема работы оптики этой системы представлена ниже.

Оптимальное расстояние от элемента Lens до отражающей поверхности под мышью должно попадать в диапазон от 2.3 до 2.5 мм. Это рекомендации производителя сенсоров. Вот вам и первая причина, почему оптические мыши плохо себя чувствуют «ползая» по оргстеклу на столе, всевозможным «полупрозрачным» коврикам и т. п. И не стоит клеить на оптические мыши «толстые» ножки, когда отваливаются или стираются старые. Мышь из-за чрезмерного «возвышения» над поверхностью может впадать в состояние ступора, когда «расшевелить» курсор после пребывания мыши в состоянии покоя становится довольно проблематично. Это не теоретические измышления, это личный опыт:)

Кстати, о проблеме долговечности оптических мышей. Помниться, некоторые их производители утверждали что, дескать «они будут служить вечно». Да надежность оптической системы слежения высока, она не идет ни в какое сравнение с оптомеханической. В то же время в оптических мышах остается много чисто механических элементов, подверженных износу точно так же, как и при господстве старой доброй «оптомеханики». Например, у моей старой оптической мыши стерлись и поотваливались ножки, сломалось колесо прокрутки (дважды, в последний раз безвозвратно:(), перетерся провод в соединительном кабеле, с манипулятора слезло покрытие корпуса… зато вот оптический сенсор нормально работает, как ни в чем не бывало. Исходя из этого, мы смело можем констатировать, что слухи о якобы впечатляющей долговечности оптических мышей не нашли своего подтверждения на практике. Да и зачем, скажите на милость, оптическим мышам «жить» слишком долго? Ведь на рынке постоянно появляются новые, более совершенные модели, созданные на новой элементной базе. Они заведомо совершеннее и удобнее в использовании. Прогресс, знаете ли, штука непрерывная. Каким он был в области эволюции интересующих нас оптических сенсоров, давайте сейчас и посмотрим.

Из истории мышиного зрения

Инженеры-разработчики компании Agilent Technologies, Inc. не зря едят свой хлеб. За пять лет оптические сенсоры этой компании претерпели существенные технологические усовершенствования и последние их модели обладают весьма впечатляющими характеристиками.

Но давайте обо всем по порядку. Первыми массово выпускаемыми оптическими сенсорами стали микросхемы HDNS-2000 (рис. 8). Эти сенсоры имели разрешение 400 cpi (counts per inch), то бишь точек (пикселей) на дюйм, и были рассчитаны на максимальную скорость перемещения мыши в 12 дюймов/с (около 30 см/с) при частоте осуществления снимков оптическим сенсором в 1500 кадров за секунду. Допустимое (с сохранением стабильной работы сенсора) ускорение при перемещении мыши «в рывке» для чипа HDNS-2000 - не более 0.15 g (примерно 1.5 м/с 2).

Затем на рынке появились микросхемы оптических сенсоров ADNS-2610 и ADNS-2620 . Оптический сенсор ADNS-2620 уже поддерживал программируемую частоту «съемки» поверхности под мышью, с частотой в 1500 либо 2300 снимков/с. Каждый снимок делался с разрешением 18х18 пикселей. Для сенсора максимальная рабочая скорость перемещения по прежнему была ограничена 12 дюймами в секунду, зато ограничение по допустимому ускорению возросло до 0.25 g, при частоте «фотографирования» поверхности в 1500 кадров/с. Данный чип (ADNS-2620) также имел всего 8 ножек, что позволило существенно сократить его размеры по сравнению с микросхемой ADNS-2610 (16 контактов), внешне похожей на HDNS-2000. В Agilent Technologies, Inc. задались целью «минимизировать» свои микросхемы, желая сделать последние компактнее, экономнее в энергопотреблении, а потому и удобнее для установки в «мобильные» и беспроводные манипуляторы.

Микросхема ADNS-2610 хотя и являлась «большим» аналогом 2620-й, но была лишена поддержки «продвинутого» режима 2300 снимков/с. Кроме того, этот вариант требовал 5В питания, тогда как чип ADNS-2620 обходился всего 3.3 В.

Вышедший вскоре чип ADNS-2051 представлял собой гораздо более мощное решение, чем микросхемы HDNS-2000 или ADNS-2610, хотя внешне (упаковкой) был также на них похож. Этот сенсор уже позволял программируемо управлять «разрешением» оптического датчика, изменяя таковое с 400 до 800 сpi. Вариант микросхемы также допускал регулировку частоты снимков поверхности, причем позволял менять ее в очень широком диапазоне: 500, 1000,1500, 2000 или 2300 снимков/с. А вот величина этих самых снимков составляла всего 16х16 пикселей. При 1500 снимках/с предельно допустимое ускорение мыши при «рывке» составляло по прежнему 0.15 g, максимально возможная скорость перемещения - 14 дюймов/с (т. е. 35.5 см/с). Данный чип был рассчитан на напряжение питания 5 В.

Сенсор ADNS-2030 разрабатывался для беспроводных устройств, а потому имел малое энергопотребление, требуя всего 3.3 В питания. Чип также поддерживал энергосберегающие функции, например функцию снижения потребления энергии при нахождении мыши в состоянии покоя (power conservation mode during times of no movement), переход в режим «сна», в том числе при подключении мыши по USB интерфейсу, и т.д.. Мышь, впрочем, могла работать и не в энергосберегающем режиме: значение «1» в бите Sleep одного из регистров чипа заставляло сенсор «всегда бодрствовать», а значение по умолчанию «0» соответствовало режиму работы микросхемы, когда по прошествии одной секунды, если мышь не перемещалась (точнее после получения 1500 совершенно одинаковых снимков поверхности) сенсор, напару с мышью, переходил в режим энергосбережения. Что касается остальных ключевых характеристик сенсора, то они не отличались от таковых у ADNS-2051: тот же 16-и контактный корпус, скорость перемещения до 14 дюймов/с при максимальном ускорении 0.15 g, программируемое разрешение 400 и 800 cpi соответственно, частоты осуществления снимков могли быть точно такими же, как и у вышерассмотренного варианта микросхемы.

Такими были первые оптические сенсоры. К сожалению, им были свойственны недостатки. Большой проблемой, возникающей при передвижением оптической мыши по поверхностям, особенно с повторяющимся мелким рисунком, являлось то, что процессор обработки изображений порой путал отдельные похожие участки монохромного изображения, получаемые сенсором и неверно определял направление перемещения мыши.

В итоге и курсор на экране перемещался не так, как требовалось. Указатель на экране даже становился способен на экспромт:) - на непредсказуемые перемещения в произвольном направлении. Кроме того, легко догадаться, что при слишком быстром перемещении мыши сенсор мог вообще утратить всякую «связь» между несколькими последующими снимками поверхности. Что порождало еще одну проблему: курсор при слишком резком перемещении мыши либо дергался на одном месте, либо происходили вообще «сверхъестественные»:) явления, например, с быстрым вращением окружающего мира в игрушках. Было совершенно ясно, что для человеческой руки ограничений в 12-14 дюймов/с по предельной скорости перемещения мыши явно мало. Также не вызывало сомнений, что 0.24 с (почти четверть секунды), отведенные для разгона мыши от 0 до 35.5 см/с (14 дюймов/с - предельная скорость) это очень большой промежуток времени, человек способен двигать кистью значительно быстрее. И потому при резких движениях мыши в динамичных игровых приложениях с оптическим манипулятором может придтись несладко…

Понимали это и в Agilent Technologies. Разработчики осознавали, что характеристики сенсоров надо кардинально улучшать. В своих изысканиях они придерживались простой, но правильной аксиомы: чем больше снимков в секунду сделает сенсор, тем меньше вероятность того, что он потеряет «след» перемещения мыши во время совершения пользователем компьютера резких телодвижений:)

Хотя, как мы видим из вышеизложенного, оптические сенсоры и развивались, постоянно выпускались новые решения, однако развитие в этой области можно смело назвать «очень постепенным». По большому счету, кардинальных изменений в свойствах сенсоров так и не происходило. Но техническому прогрессу в любой области порой свойственны резкие скачки. Случился такой «прорыв» и в области создания оптических сенсоров для мышей. Появление оптического сенсора ADNS-3060 можно считать действительно революционным!

Лучший из

Оптический сенсор ADNS-3060 , по сравнению со своими «предками», обладает поистине впечатляющим набором характеристик. Использование этой микросхемы, упакованной в корпус с 20-ю контактами, обеспечивает оптическим мышам невиданные ранее возможности. Допустимая максимальная скорость перемещения манипулятора выросла до 40 дюймов/с (то есть почти в 3 раза!), т.е. достигла «знаковой» скорости в 1 м/с. Это уже очень хорошо - вряд ли хоть один пользователь двигает мышь с превышающей данное ограничение скоростью столь часто, чтобы постоянно чувствовать дискомфорт от использования оптического манипулятора, в том числе это касается и игровых приложений. Допустимое же ускорение выросло, страшно сказать, во сто раз (!), и достигло величины 15 g (почти 150 м/с 2). Теперь на разгон мыши с 0 до предельных 1 м/с пользователю отводится 7 сотых секунды - думаю, теперь очень немногие сумеют превзойти это ограничение, да и то, вероятно, в мечтах:) Программируемая скорость осуществления снимков поверхности оптическим сенсором у новой модели чипа превышает 6400 кадров/с, т.е. «бьет» предыдущий «рекорд» почти в три раза. Причем чип ADNS-3060 может сам осуществлять подстройку частоты следования снимков для достижения наиболее оптимальных параметров работы, в зависимости от поверхности, над которой перемещается мышь. «Разрешение» оптического сенсора по прежнему может составлять 400 или 800 cpi. Давайте на примере микросхемы ADNS-3060 рассмотрим общие принципы работы именно чипов оптических сенсоров.

Общая схема анализа перемещений мыши не изменилась по сравнению с более ранними моделями - полученные блоком IAS сенсора микроснимки поверхности под мышью обрабатываются затем интегрированным в этой же микросхеме DSP (процессором), который определяет направление и дистанцию перемещения манипулятора. DSP вычисляет относительные величины смещения по координатам × и Y, относительно исходной позиции мыши. Затем внешняя микросхема контролера мыши (для чего он нужен, мы говорили ранее) считывает информацию о перемещении манипулятора с последовательного порта микросхемы оптического сенсора. Затем уже этот внешний контроллер транслирует полученные данные о направлении и скорости перемещения мыши в передаваемые по стандартным интерфейсам PS/2 или USB сигналы, которые уже от него поступают к компьютеру.

Но вникнем чуть глубже в особенности работы сенсора. Блок-схема чипа ADNS-3060 представлена выше. Как видим, принципиально его структура не изменилась, по сравнению с далекими «предками». 3.3 В питание к сенсору поступает через блок Voltage Regulator And Power Control, на этот же блок возложена функции фильтрации напряжения, для чего используется подключение к внешнему конденсатору. Поступающий с внешнего кварцевого резонатора в блок Oscillator сигнал(номинальная частота которого 24 МГц, для предыдущих моделей микросхем использовались более низкочастотные задающие генераторы) служит для синхронизации всех вычислительных процессов, протекающих внутри микросхемы оптического сенсора. Например, частота снимков оптического сенсора привязана к частоте этого внешнего генератора (кстати, на последний наложены не весьма жесткие ограничения по допустимым отклонениям от номинальной частоты - до +/- 1 МГц). В зависимости от значения, занесенного по определенному адресу (регистру) памяти чипа, возможны следующие рабочие частоты осуществления снимков сенсором ADNS-3060.

Значение регистра, шестнадцатеричное Десятичное значение Частота снимков сенсора, кадров/с
OE7E 3710 6469
12C0 4800 5000
1F40 8000 3000
2EE0 12000 2000
3E80 16000 1500
BB80 48000 500

Как нетрудно догадаться, исходя из данных в таблице, определение частоты снимков сенсора осуществляется по простой формуле: Частота кадров = (Задающая частота генератора (24 МГц)/Значение регистра отвечающего за частоту кадров).

Осуществляемые сенсором ADNS-3060 снимки поверхности (кадры) имеют разрешение 30х30 и представляют собой все ту же матрицу пикселей, цвет каждого из которых закодирован 8-ю битами, т.е. одним байтом (соответствует 256 градациям серого для каждого пикселя). Таким образом, каждый поступающий в DSP процессор кадр (фрейм) представляет собой последовательность из 900 байт данных. Но «хитрый» процессор не обрабатывает эти 900 байт кадра сразу по поступлении, он ждет, пока в соответствующем буфере (памяти) накопится 1536 байт сведений о пикселях (то есть добавится информация еще о 2/3 последующего кадра). И только после этого чип приступает к анализу информации о перемещении манипулятора, путем сравнения изменений в последовательных снимках поверхности.

С разрешением 400 или 800 пикселей на дюйм их осуществлять, указывается в бите RES регистров памяти микроконтроллера. Нулевое значение этого бита соответствует 400 cpi, а логическая единица в RES переводит сенсор в режим 800 cpi.

После того как интегрированный DSP процессор обработает данные снимков, он вычисляет относительные значения смещения манипулятора вдоль осей × и Y, занося конкретные данные об этом в память микросхемы ADNS-3060. В свою очередь микросхема внешнего контроллера (мыши) через Serial Port может «черпать» эти сведения из памяти оптического сенсора с частой примерно раз в миллисекунду. Заметьте, только внешний микроконтроллер может инициализировать передачу таких данных, сам оптический сенсор никогда не инициирует такую передачу. Поэтому вопрос оперативности (частоты) слежения за перемещением мыши во многом лежит на «плечах» микросхемы внешнего контроллера. Данные от оптического сенсора передаются пакетами по 56 бит.

Ну а блок Led Cотtrоl, которым оборудован сенсор, ответственен за управление диодом подсветки - путем изменения значения бита 6 (LED_MODE) по адресу 0x0a микропроцессор оптосенсора может переводить светодиод в два режима работы: логический «0» соответствует состоянию «диод всегда включен», логическая «1» переводит диод в режим «включен только при необходимости». Это важно, скажем, при работе беспроводных мышей, так как позволяет экономить заряд их автономных источников питания. Кроме того, сам диод может иметь несколько режимов яркости свечения.

На этом, собственно, все с базовыми принципами работы оптического сенсора. Что еще можно добавить? Рекомендуемая рабочая температура микросхемы ADNS-3060, впрочем как и всех остальных чипов этого рода, - от 0 0С до +40 0С. Хотя сохранение рабочих свойств своих чипов Agilent Technologies гарантирует в диапазоне температур от -40 до +85 °С.

Лазерное будущее?

Недавно сеть наполнили хвалебные статьи о мыши Logitech MX1000 Laser Cordless Mouse, в которой для подсветки поверхности под мышью использовался инфракрасный лазер. Обещалась чуть ли не революция в сфере оптических мышей. Увы, лично попользовавшись этой мышью, я убедился, что революции не произошло. Но речь не об этом.

Я не разбирал мышь Logitech MX1000 (не имел возможности), но уверен, что за «новой революционной лазерной технологией» стоит наш старый знакомый - сенсор ADNS-3060. Ибо, по имеющимся у меня сведениям, характеристики сенсора этой мыши ничем не отличаются от таковых у, скажем, модели Logitech МХ510 . Вся «шумиха» возникла вокруг утверждения на сайте компании Logitech о том, что с помощью лазерной системы оптического слежения выявляется в двадцать раз (!) больше деталей, чем с помощью светодиодной технологии. На этой почве даже некоторые уважаемые сайты опубликовали фотографии неких поверхностей, дескать, как видят их обычные светодиодные и лазерные мыши:)

Конечно, эти фото (и на том спасибо) были не теми разноцветными яркими цветочками, с помощью которых нас пыталась убедить на сайте Logitech в превосходстве лазерной подсветки системы оптического слежения. Нет, конечно же, оптические мыши не стали «видеть» ничего подобного на приведенные цветные фотографии с разной степенью детализации - сенсоры по-прежнему «фотографируют» не более чем квадратную матрицу серых пикселей, отличающихся между собой лишь разной яркостью (обработка информации о расширенной цветовой палитре пикселей непомерным грузом легла бы на DSP).

Давайте прикинем, для получения в 20 раз более детализированной картинки, нужно, извините за тавтологию, в двадцать раз больше деталей, передать которые могут только дополнительные пиксели изображения, и ни что иное. Известно, что Logitech MX 1000 Laser Cordless Mouse делает снимки 30х30 пикселей и имеет предельное разрешение 800 cpi. Следовательно, ни о каком двадцатикратном росте детализации снимков речи быть не может. Где же собака порылась:), и не являются ли подобные утверждения вообще голословными? Давайте попробуем разобраться, что послужило причиной появления подобного рода информации.

Как известно, лазер излучает узконаправленный (с малым расхождением) пучок света. Следовательно, освещенность поверхности под мышью при применении лазера гораздо лучше, чем при использовании светодиода. Лазер, работающий в инфракрасном диапазоне, был выбран, вероятно, чтобы не слепить глаза возможным все-таки отражением света из-под мыши в видимом спектре. То, что оптический сенсор нормально работает в инфракрасном диапазоне не должно удивлять - от красного диапазона спектра, в котором работает большинство светодиодных оптических мышей, до инфракрасного -«рукой подать», и вряд ли для сенсора переход на новый оптический диапазон был труден. Например, в манипуляторе Logitech MediaPlay используется светодиод, однако также дающий инфракрасную подсветку. Нынешние сенсоры без проблем работают даже с голубым светом (существуют манипуляторы и с такой подсветкой), так что спектр области освещения - для сенсоров не проблема. Так вот, благодаря более сильной освещенности поверхности под мышью, мы вправе предположить, что разница между местами, поглощающими излучение (темными) и отражающими лучи (светлыми) будет более значительной, чем при использовании обычного светодиода - т.е. изображение будет более контрастными.

И действительно, если мы посмотрим на реальные снимки поверхности, сделанные обычной светодиодной оптической системой, и системой с использованием лазера, то увидим, что «лазерный» вариант куда более контрастен - отличия между темными и яркими участками снимка более значительны. Безусловно, это может существенно облегчить работу оптическому сенсору и, возможно, будущее именно за мышами с лазерной системой подсветки. Но назвать подобные «лазерные» снимки в двадцать раз более детализированными вряд ли можно. Так что это еще один «новорожденный» миф.

Какими будут оптические сенсоры ближайшего будущего? Сказать трудно. Вероятно, они перейдут таки на лазерную подсветку, а в Сети уже ходят слухи о разрабатываемом сенсоре с «разрешением» 1600 cpi. Нам остается только ждать.

(1 оценок, среднее: 5,00 из 5)

Современному подростку сложно будет объяснить, что было время, когда мышь являлась не обязательным периферийным устройством компьютера. Что был когда-то такой аксессуар, как коврик для мышки. И уже наверняка современные пользователи начали забывать шариковую мышку, которая по этому коврику ездила. Что этот самый шарик надо было регулярно чистить и промывать.
Сегодня перед некоторыми пользователями стоит более актуальная проблема: что лучше – оптическая мышь или лазерная? И какую выбрать себе. Чтобы разрешить эту дилемму необходимо разобраться, как они функционируют и в чём их технические особенности.

Компьютерная мышь – одно из устройств ввода компьютера. Её функция заключается в связи пользователя с компьютером посредством преобразования механической энергии на язык, понятный машине. Мышь фиксирует своё перемещение по плоскости, а специальная программа (драйвер) воспроизводит это на экране монитора. Все принципиальные различия между мышками заключаются в способе фиксации перемещения.
В шариковых мышках основной шарик вращал два других, закреплённых внутри корпуса мыши. Один из них отвечал за ось Х; другой – за ось Y. И с тем, и с другим роликом тесно контактируют перфорированные валики, через которые инфракрасный датчик улавливал излучение от источника. С датчика, сигнал поступал на встроенный процессор. Такая конструкция была неудобна, а точность воспроизведения посредственна.
Оптическая мышь состоит из миниатюрной камеры , светодиода и процессора. Светодиод подсвечивает поверхность, а камера её фиксирует, передавая информацию на процессор. По изменению узора поверхности процессор определяет изменение положение мышки на плоскости и передаёт эти данные в компьютер. Такая мышь будет работать практически на любой поверхности, а перемещение курсора стало значительно точнее. Оптическая мышь не чувствительна к механическим воздействиям. А если сломалась – стоит копейки.
Лазерная мышь – это модернизации оптической. Её принципиальное отличие от оптической заключается в том, что светодиод был заменён на лазер. Таким образом, существенно повысилась точность фиксации перемещения. Ещё один плюс такой конструкции – это низкое энергопотребление, что очень актуально для беспроводных мышек. Стоят эти плюсы порядка 70 долларов.

Так какая мышка лучше: лазерная или оптическая? Весь вопрос в целесообразности. Для работы с офисными программами или ноутбуками Acer вполне подойдёт обычная оптическая мышь. Переплачивать за лазерную будет бессмысленным расточительством. Для геймера, конечно, очень кстати придётся повышенная точность мыши, а за это не грех и раскошелиться.

Смотри так же: Рассказать друзьям:

Лазерная или оптическая мышь лучше? Данный вопрос наверняка волновал многих людей. Работа оптической мыши основывается на светодиодах. При помощи них устройство способно принимать информацию. После этого она подвергается обработке. За данный процесс отвечает встроенный процессор персонального компьютера. В лазерных мышах какие-либо светодиоды отсутствуют. Вся работа данных устройств построена на использовании полупроводникового лазера. Дополнительно в них установлен специальный сенсор. С его помощью персональный компьютер способен определить длину волны свечения. В результате точная позиция девайса становится ясной.

Что все-таки лучше - оптическая мышь или лазерная? Для правильного выбора необходимо узнать обо всех преимуществах и недостатках данных устройств. Дополнительно следует ознакомиться с основными производителями, которые выпускают качественные лазерные, а также оптические мыши.

Плюсы и минусы оптических мышей

Главным преимуществом всех оптических мышей является их стоимость. На рынке они обойдутся человеку гораздо дешевле, нежели лазерные устройства. Дополнительно оптическая мышь способна похвастаться небольшим зазором с рабочей поверхностью. В результате можно не использовать коврик для мыши. Однако на некоторых поверхностях оптические устройства не способны работать. В первую очередь это касается глянцевых и стеклянных покрытий.

Еще следует учитывать небольшую точность курсора. Также показатель скорости по сравнению с лазерными мышами также отстает. В целом чувствительность устройства довольно плохая. Подсветка, которую имеет оптическая мышь, иногда может отвлекать человека. При этом данный девайс потребляет много электричества. Особенно это сильно заметно у беспроводных моделей.

Каковы особенности лазерных мышей?

Лазерные мыши способны работать на любых поверхностях. Показатель точности довольно высокий. При этом скорость курсора быстрая. В целом чувствительность лазерной мыши хорошая. Видимое свечение в данных устройствах отсутствует. Потребление электроэнергии довольно низкое, даже в беспроводном варианте . Дополнительно следует выделить многофункциональность лазерных мышей. Если говорить о недостатках, то следует упомянуть о высокой стоимости данных девайсов. Второй минус кроется в большом зазоре с рабочей поверхностью. При эксплуатации лазерной мыши желательно использовать коврик.


Оптические мыши компании UFT

Данные оптические мыши выделяются своим интересным дизайном. Корпус большинства моделей изготавливается из бамбука. Подключение оптической мыши происходит через USB-кабель. Формы устройства эргономичны, и в ладони человека это чувствуется. Наиболее популярной считается модель UFT M5. Она имеет две кнопки без вспомогательных. Размеры этой модели следующие: ширина - 50 мм, высота - 30 мм, а глубина - 105 мм. На рынке стоимость данной мыши составляет примерно 900 руб.

Чем отличаются оптические мыши "Свен"?

Компания "Свен" производит лучшие оптические мыши отменного качества. Многие модели имеют разрешение до 800 dpi. Длина кабеля проводных устройств составляет 1.5 м. Средняя масса девайса находится в районе 0.112 кг. В целом конструкция оптических мышей довольно проста. Компания "Свен" славится своей высокоскоростной технологией по всему миру. При этом многие мыши способны работать практически на любой поверхности.


Наиболее популярной считается модель "Свен RX-111". Данная оптическая беспроводная мышь оснащена двумя клавишами и колесом прокрутки. В работе она практически беззвучна. Точность манипуляций довольно высокая. Форма у данной модели полностью ассиметричная. В целом ее можно охарактеризовать как простую и экономичную. Ее стоимость на рынке составляет только 300 руб.

Еще одной интересной моделью является "Свен CS-306". Данная оптическая мышь очень компактная. Ширина устройства составляет 125 мм, высота - 69 мм, глубина - 44 мм. Кабель девайса имеет длину стандартную - 1.5 м. Корпус модели пластмассовый и довольно прочный. Также следует отметить неплохой дизайн девайса. Стоимость данной оптической мыши составляет 450 руб.

Оптическая модель "Залман ZM-M300"

Данный производитель считается не особенно популярным, но эта модель пользуется большим спросом. В основном оптическая мышь "Залман ZM-M300" славится своей функциональностью. Для этого предусмотрено целых 5 кнопок. Дополнительно имеется колесико для прокрутки. Разрешение устройства составляет 2500 dpi. При этом частота обновлений находится на отметке 4500 fps.

Длина кабеля данной модели составляет 1.5 м. Размеры этот девайс имеет следующие: ширина - 132 мм, высота - 65 мм, а глубина - 42 мм. Общая масса устройства равна 0.078 кг. Как отмечают владельцы оптической мыши, она очень удобна благодаря своей эргономической форме. Колесико данной модели покрыто резиной. При этом на нем имеются рельефные полоски. В целом пользоваться данной моделью очень приятно.

Лазерные мыши компании Genius

Данная компания известна во многих странах. В целом лазерные мыши этой торговой марки способны похвастаться хорошим разрешением сенсора. Существует множество дорогих, а также экономных моделей для дома и офиса. Дополнительно они все отличаются по дизайну. Учитывая это, всегда можно подобрать подходящий вариант. Наиболее популярной считается модель Genius NS 200. На ней имеется две клавиши и одно колесо прокрутки.


Разрешение сенсора данного девайса составляет 800-1600 dpi. Размеры модели следующие: длина - 126 мм, высота - 80 мм, а глубина - 44 мм. Операционные системы поддерживаются самые разнообразные. Цена этой модели составляет 450 руб. В целом данная лазерная мышь больше подходит для офиса. Небольшая чувствительность не позволит играть дома в видеоигры комфортно. Дополнительно у мыши маленький показатель скорости курсора.

Genius GX Gaming

Более продвинутой версией считается модель Genius GX Gaming. Данная лазерно-оптическая мышь идеально подходит для геймеров. Производители оснастили эту модель одиннадцатью кнопками. Максимальный показатель разгона составляет 8200 dpi. При этом имеется подсветка трех областей. Дополнительно можно отметить хорошую функциональность данной лазерной мыши. Команд в этой модели можно назначить 72. Время отклика курсора составляет только 1 мс.

Вес лазерной мыши можно легко регулировать. Происходит это за счет специальных металлических грузиков, которые имеются в комплекте. Всего есть 6 пластин весом по 4.5 г. Учитывая это, данную лазерную мышь можно легко подстроить под свой тип игры. В стандартном наборе девайса также предусмотрен драйвер для пользовательского интерфейса.


Плюс ко всему производители включают специальный чехол, который позволяет хранить отдельно металлические грузики устройства. Длина кабеля немного больше стандартного размера и составляет 1.8 м. Размеры данной модели следующие: ширина - 114 мм, высота - 72 мм, глубина - 44 мм. Цена устройства - 4500 руб.

Подведение итогов

Подводя итоги можно, наконец, ответить на вопрос: "Оптическая мышь или лазерная - что лучше?" Учитывая все вышесказанное, лучшим считается именно второй вариант. Для домашнего использования лазерные мыши являются более комфортными. При этом существует большой ассортимент моделей, и подобрать подходящий вариант - не проблема.

Лазерная мышь Genius GX Gaming, естественно, больше подходит для геймеров, однако Genius NS 200 - вполне хороший выбор . В свою очередь, оптические устройства стоят гораздо дешевле. Из представленных выше моделей можно отметить компанию "Свен". Мышь "Свен RX-111" вполне подойдет для домашнего использования. Особой чувствительности у нее нет, но большинство людей просто не заметят эту разницу.



Компьютернаямышь стала незаменимым манипулятором с приходом графического интерфейса воперационные системы. С момента появления первых моделей произошли значительныеконструктивные изменения. На сегодняшний день преобладает только один тип -оптический, который делится на оптический лазерный (лазерная мышка) иоптический светодиодный (оптическая мышка).

Существовавший ранее оптикомеханический (шариковый), более не востребован (был вытеснен) из-за своих технический особенностей в виде вращающихся элементов и небольшой разнице в стоимости между оптической и оптикомеханической технологией.



Оптическая лазерная или оптическая светодиодная


Оптическая и светодиодная мышка – это одно и тоже. Ее отличительной чертой является подсветка красного, синего или зеленого цвета. Данный тип не очень хорошо работают на глянцевых, стеклянных, прозрачных, зеркальных поверхностях, проще говоря на тех, которые способны отражать или пропускать свет через себя. Проявляется это в виде рывков указателя во время перемещения. Для нормальной работоспособности на подобных поверхностях потребуется коврик.


Максимальное значение чувствительности намного ниже, чем у лазерной.

Конструкция состоит из светодиода, группы линз, сенсора в роли которого выступает крошечная видеокамера, делающая сотни десятков снимков за секунду. Снимки отправляются на компьютер для дальнейшей обработки с целую получить данные о положении и перемещениях устройства. Светодиод требуется для подсветки поверхности камере.


Оптическая технология более старая, а значит стоимость конечного продукта будет ниже.


Лазерная мышка не имеет видимой подсветки, так как лазер излучает волны в инфракрасном спектре, который недоступен человеческому глазу для восприятия.

В отличии от оптической, лазерная способна работать на любой поверхности включая зеркальную.

Чувствительность достигает значительно больших значений. На таких моделях часто присутствует кнопка переключения чувствительности, которая позволяет сделать ход указателя на экране более быстрым, либо плавным.


Устройство представляет собой почти тоже самое, что и в предыдущем случае за исключением камеры и светодиода, вместо которых используется лазер.

Технология производства более новая и требует больших затрат из-за иного технологического подхода к считыванию положения.


Лазерная мышка более совершенная и современная . Но значит ли это, что она лучше? Безусловно для таких задач, как точная работа с графикой или видеоигр, где требуется точность и быстрота реакции. Нужна ли такая мышка обычному пользователю для повседневных задач? – Вероятно нет.


Какая мышка лучше проводная или беспроводная

Каждый вариант соединения имеет свои плюсы и минусы. Для каждого они будут разными, но основные, которые продиктованы технологическими решениями останутся неизменными.


Проводная мышь

Проводная мышка считается классическим вариантом, но это не значит, что она во многом лучше беспроводной.

Плюсы

    Не требует замены, либо зарядки источника питания, так как получает напряжение от USB или PS/2 (для более ранних моделей) порта компьютера.


Минусы

    Ограничение радиуса действия длинной провода. Не дает полной свободы, сковывает движения руки

    Еще один провод без которого и так хватает остальных

    Занимает USB порт , количество которых сильно ограниченно на ноутбуках и некоторых материнских платах пк.


Беспроводная мышь

Современные беспроводные модели мало, чем уступают своему классическому варианту. Для подключения используется USB радиоприемник, либо Bluetooth соединение с пк, в зависимости от метода подключения и модели. Существует два вида типа элементов питания: 1 батарейки типоразмера AA или AAA, 2 встроенный аккумулятор.

    В первом случае батарейки возможно заменить на новые или использовать перезаряжаемые аккумуляторы аналогичного типоразмера.

    Во втором придется заряжать встроенный аккумулятор питания.

Плюсы

    Самый главный плюс – это отсутствие проводов, ограничивающих «сковывающих» передвижение.

    Идеальный выбор в качестве мышки для ноутбука.

    Многие модели имеют небольшие габариты.

Минусы

    Требуется периодическая замена или зарядка элементов питания.

    Так же занимает USB порт в случае использования моделей с радиосигналом.

Мифы

Говорят, что беспроводная мышка медленнее работает, чем проводная. Это действительно правда, но применимо в основном к первым или недоброкачественным моделям.


Кнопка dpi на мышке что это


DPI илиКоличество точек на один дюйм. Обозначает предел способности ввода, выводаинформации. Отображает точность и плавность перемещения манипулятора. Чем вышезначение, тем более плавным будет перемещение курсора по экрану.

Кнопкапереключения значений dpi, полезна при различных сценариях использования.

Для повседневных задач, типа интернета вполне хватит от 800 до 1000dpi.

Кнопка присутствует в основном на лазерных мышках.

    Оптические (светодиодные) мышки имеют значение не более 1200-1800.

    Лазерные от пары тысяч до 12000.


Выводы

Правильный выбор поможет не только съэкономить средства, но и подарит больше комфорта, удобства при работе.


Для графических редакторов и игр, где требуется быстрое и точное позиционирование, лучше подойдут лазерные.


Для повседневных задач оптические.

Компьютерная мышь - это удобная и распространённая разработка. Этот небольшой аксессуар позволяет упростить работу с компьютером. Работать с электронными документами, с мультимедией и играть в игры становится невозможным без этого устройства.

В магазинах можно купить любую модель, которая отличается размером, кнопками и ценой. Но главное - это внутренность этого устройства. Для того, чтобы понять, какое устройство лучше выбрать, нужно разобраться, что скрывается под крышкой мыши.

Компьютерная мышь: сравнение, модификация и выбор

В последние время, мировой рынок заполонили оптические мыши , которые имеют под коробкой высокочувствительный датчик. Именно камера, которая скрывается, внутри, передаёт необходимые команды процессору компьютера. Эта камера делает несколько тысяч снимков в секунду.

Работает девайс от излучения светодиода. Лучи фокусируются на первой линзе и образуют область захвата, которая фиксирует все, что находится на поверхности. Простыми словами информация сканируется и поступает на сенсор. Оттуда поток данных получает процессор, который обрабатывает информацию и позволяет осуществлять действие.

Основным элементом работы оптической лазерной мыши является лазерный диод , который работает в инфракрасном спектре. На сегодняшний день компьютерные разработчики, произвели модели, у которых в корпусе могут располагаться как сенсор, так и процессор вместе с диодом.

Особенности и параметры работы компьютерной мыши

Перед тем как купить, этот аксессуар нужно, знать не только принцип работы той или иной модели, но и её особенности , от которых зависит работоспособность устройства.

Ещё одним немаловажным параметром аксессуара является энергопотребление . Выделяют две модели:

  • Проводная мышь - дешёвый вариант. Такая мышь не потребляет энергию самостоятельно, так как напрямую зависит от системного блока компьютера.
  • Беспроводной девайс зависит от аккумулятора. Этот параметр является важным для работы устройства. Нормой можно назвать потребление в 100 мА.

Если сравнивать две модели, то стоит отметить, что бюджетный вариант, с точки зрения энергопотребления, прослужит дольше, нежели инновационный девайс.

Какую мышь выбрать - лазерную или оптическую?

Перед тем как купить, нужно обязательно взвесить все за или против. В нашем динамичном, инновационном образе жизни этот выбор является одним из важных. Практически все организации, предприятия перешли на компьютерное обеспечение. Поэтому, чтобы обеспечить себя нормальной работой, стоит знать какие преимущества и недостатки есть у такого важного аксессуара, как компьютерная мышь.

Многие считают, что основное предназначение девайса - это водить курсором по экрану. Но это не так, ведь основное её предназначение - это выводить на экран точность с определённой скоростью. Ведь наверняка каждый из нас пробовал играть на компьютере, и в этом случае как раз мышь компьютерная показывает «себя во всей красе». Проводные модели не имеют столь быстрых параметров, поэтому для игр на компьютере не подходят вовсе.

Выбирать, какая мышь лучше, конечно же, вам. Но кроме того, чтобы знать, как отличать модели, нужно придерживаться основных советов .

  • Прежде чем купить девайс, нужно реально оценить возможности вашего компьютера.
  • Кроме этого, стоит определить, для каких целей вам нужно это устройство. Ведь если для работы на стационарном компьютере, то лучшего варианта, чем светодиодный оптический девайс, вам не найти. А если вы собираетесь играть, то оптимальным вариантом может стать лишь лазерная модель.

Microsoft в 1999-м году выпустила первую в мире. Модель с лазерным датчиком первой сделала Logitech.

В оптической мыши установлен яркий светодиод, который подсвечивает поверхность, а оптический сенсор (в мышах с разрешающей способностью 800 dpi – микрокамера) с большой частотой делает «снимки» этой поверхности. Далее эти «снимки» обрабатываются процессором манипулятора, который выводит в порт результаты в виде перемещения мыши по координатным осям. Соответственно, пользователь видит перемещение курсора по экрану.

Недостаток обычной оптической заключается в том, что свет диода рассеивается, и даже при высокой разрешающей способности оптического сенсора на гладкой блестящей поверхности изменения ее рельефа отслеживаются очень плохо. Курсор вообще может не реагировать на движения манипулятора, либо будут наблюдаться такие эффекты, как срыв курсора (он резко улетает в случайную сторону) или стрелка медленно движется в какую-либо сторону, хотя манипулятор неподвижен.

Особенно такая ситуация неприятна для геймеров. У лазерной мыши вместо диода установлен лазер. Здесь рассеивание света если и есть, то совсем незначительное, а значит изображение, которое попадает на оптический сенсор, намного детальнее, чем при использовании светодиода, и перемещения мыши будут фиксироваться точнее.

Положение указателя при нажатии CTRL

Если у вас слишком большое разрешение экрана, то курсор мыши выглядит слишком маленьким. Для людей с ослабленным зрением рекомендуется включить функцию Обозначть положение указателя при нажатии CTRL (Панель управления | Мышь | вкладка Параметры указателя).

Включить повышенную точность установки указателя

Если вы подключаете внешнюю мышь к ноутбуку и замечаете, что курсор слишком резко метается по экрану, то снимите галочку с пункта Включить повышенную точность установки указателя (Панель управления | Мышь | вкладка Параметры указателя). Дело в том, что данная функция оптимизирована для работы с тачпадом на ноутбуке, чтобы пользователю было удобно быстро перемещаться с его помощью по всему экрану.


Каждый человек, проводящий время за компьютером, пользуется таким манипулятором, как мышь. Данный орган управления задействуется при работе с документами, при веб-сёрфинге, а также во время прохождения игр. Нередко случается так, что купленная модель мыши (оптическая или лазерная) не удовлетворяет запросы владельца, из-за чего ему приходится тратить деньги на другой аксессуар. В предлагаемом обзоре мы попробуем узнать, чем оптическая мышка отличается от лазерной, какая из этих разновидностей лучше и в каких случаях нужно отдавать предпочтение тому или иному типу. Итак, приступим.

Особенности конструкции оптической и лазерной мыши

Возможно, кого-то это удивит, но рассматриваемый орган управления (в обоих случаях) является своеобразной фотокамерой. Однако данные камеры захватывают не лица, а изображения поверхности, на которой их размещают (стол, коврик, диван и так далее). После захвата полученные сведения преобразуются в электронные данные, благодаря которым отслеживается текущее местонахождение периферии на конкретной поверхности. Проще говоря, такие миниатюрные камеры, которые мы часто держим в руке, отслеживают свои координаты по осям X и Y.

В конструкцию каждой современной мыши входит три главных элемента:

  1. Крошечная камера, имеющая низкое разрешение (или так называемый CMOS-сенсор).
  2. Пара объективов.
  3. Определенный источник света.
Принцип функционирования лазерных и оптических мышей тоже почти идентичен:
  1. Световой источник подаёт луч на поверхность, располагающуюся под ним. Двигаясь в заданном направлении, луч проходит через один из объективов.
  2. Достигая преграды, световой поток отражается от неё и попадает на другой объектив.
  3. Последний элемент увеличивает свет, после чего происходит его передача на датчик CMOS.
  4. Датчик осуществляет сбор полученного света и его последующее преобразование в электроток.
  5. После этого аналоговые сведения преобразуются в значения 1 и 0. Таким образом, происходит захват как минимум 10 тысяч цифровых изображений ежесекундно.
  6. Потом захваченные изображения сравниваются в целях определения точного местонахождения манипулятора.
  7. Итоговые данные переправляются на компьютер, который отвечает уже за размещение курсора в конкретной области монитора. Сведения по размещению мыши передаются каждую 1/8 миллисекунды.
Как видно, у двух типов этих манипуляторов много общего, но тогда возникает закономерный вопрос: в чем разница между лазерной и оптической мышкой. А разница заключается в типе света, который подает источник:
  1. В оптических мышках применяется светодиод красного, зелёного или синего цвета. Излучаемый свет проходит через все этапы, описанные выше.
  2. Лазерные мышки , как нетрудно догадаться, используют полупроводниковый лазер в инфракрасном диапазоне. Отсюда следует вывод, что исходящий свет невидим для человеческого глаза. Алгоритм работы таких моделей очень похож на функционирование оптических аналогов, вот только сенсор настроен на улавливание не всего светового потока, а соответствующей длины его волны.
Наиболее важным условием для быстрого и правильного определения месторасположения мыши является анализ неровностей поверхности. Вот тут проявляется первое весомое преимущество лазерных устройств. Дело в том, что светодиод оптических моделей проникает только в верхние слои преграды. На стандартных поверхностях (стол, коврик) этого достаточно. Но если разместить мышь на стекле, гладкой столешнице или на ноге, её отзывчивость упадёт в разы. Что касается ИК-лазера, то он проникает гораздо глубже в текстуру преграды. Таким образом, обеспечивается надлежащая передача данных при нахождении манипулятора на любой поверхности.

Ещё одним немаловажным фактором является разрешающая способность устройств - она обозначается аббревиатурой dpi. От разрешающей способности напрямую зависит чувствительность гаджета. В принципе, для удобной работы с ПК достаточно значения в 800 dpi. Но что же нам могут предложить два конкурирующих вида мышек?

  1. Оптические мыши как раз и располагают необходимым минимумом в 800 dpi. Разрешающая способность на самых дорогих устройствах такого типа достигает 1200 dpi.
  2. Лазерные модели могут «похвастаться» более внушительными способностями. В среднем, рассматриваемое значение на них составляет 2000 dpi. На флагманских моделях данный показатель превышает отметку в 4000 dpi. Ну а настоящими «богами» своей категории являются модели с разрешающей способностью в 5700 dpi.

Как видно, лазер обладает большей продуктивностью, нежели светодиод. Кроме того, есть ещё ряд отличий, о которых мы поговорим далее.

Второстепенные отличительные черты между оптическими и лазерными мышками


Здесь, по сути, можно выделить всего три момента, но каждый из них способен повлиять на итоговый выбор покупателя:
  1. Работоспособность при возникновении зазора между девайсом и поверхностью. В этом плане оптические аналоги полностью переигрывают своих лазерных конкурентов. Если оптическую мышь водить над столом примерно на сантиметровой высоте, курсор на мониторе тоже будет перемещаться. Но если вы попробуете проделать аналогичное действие с лазерным гаджетом, курсор останется на месте. Во многом это объясняется тем, что девайсы второй группы направлены на глубинный анализ рабочей поверхности. Если их приподнять, такой анализ осуществляться не будет, а значит - мышь не сможет определить своё местоположение на плоскости.
  2. Энергопотребление. Этот, казалось бы, важный параметр относится к категории вспомогательных из-за того, что он имеет весомое значение только при использовании беспроводных моделей. Здесь преимущество опять переходит к лазерным устройствам. Для работы ИК-излучателя требуется гораздо меньше энергии, чем для яркого светодиода. Таким образом, батарейки на лазерных гаджетах будут садиться гораздо дольше, а это сэкономит деньги.
  3. Подсветка. Многие владельцы оптических мышек знают, что светодиод горит достаточно ярко. Во время работы данное свечение можно даже считать приятным украшением, вот только есть и другая сторона медали. Сегодня многие пользователи ПК не выключают свои машины на ночь, а переводят их в режим ожидания. И все бы ничего, но при таком условии яркое свечение остается. Более того, некоторые оптические модели продолжают светить даже после полного отключения ПК (когда сетевой фильтр остается работать). Отсюда выходит сразу два минуса: свечение может мешать уснуть, а на поддержание его работы тратится дополнительная энергия, что непременно отразится в платежке за электричество (конечно, прибавка будет не такой уж большой, но факт остается фактом). В случае с лазерными аналогами такой проблемы нет. Эти мышки не выдают никакого свечения, а при переводе машины в режим ожидания они почти не потребляют электроэнергию.

Плюсы и минусы лазерных и оптических мышек


У оптических мышек можно выделить всего две сильные стороны:
  1. Более низкую цену в сравнении с лазерными конкурентами.
  2. Сохранение работоспособности при возникновении зазора между источником света и плоскостью.
А вот недостатков у таких устройств достаточно много:
  1. Повышенные требования к типу рабочей поверхности. Для этих моделей подойдёт только специальный компьютерный стол или же стол с ковриком. На зеркальной, стеклянной или глянцевой плоскости эти аппараты работать не будут или будут, но очень плохо.
  2. Более низкая точность в определении месторасположения. Это опять-таки связано с типом света и алгоритмом его обработки. Поскольку светодиод проникает только в наружные слои плоскости, месторасположение гаджета определяется с погрешностями. Если при веб-серфинге или редактировании документов такой изъян малозаметен, то во время игры данные неточности могут стать «фатальными» для геймера.
  3. Более низкая чувствительность , обусловленная не очень высокими показателями разрешающей способности.
  4. Высокое энергопотребление при работе светодиодной подсветки. Из-за этого фактора на беспроводных моделях будут быстро садиться батарейки. Если же применять проводной девайс, он будет потреблять гораздо больше электричества. И не стоит забывать о том, что свечение может мешать уснуть, если оставлять ПК в режиме ожидания на ночь.
У лазерных мышек ситуация полностью зеркальная. Они имеют такие преимущества:
  1. Возможность работы на любых плоскостях.
  2. Высокую точность в определении местонахождения мыши.
  3. Повышенную чувствительность.
  4. Экономное энергопотребление и отсутствие отвлекающей подсветки.
Минусы вполне очевидные:
  1. Более высокая стоимость.
  2. Прекращение нормальной работы при возникновении минимального зазора между источником ИК-лазера и поверхностью.
Кроме того, есть один специфический изъян, который может сформироваться из двух плюсов: работы на любой поверхности и высокой чувствительности. Дело в том, что если поставить лазерную мышь на необычную поверхность (стеклянный стол, мягкую кровать, на ногу поверх одежды), она начнет обрабатывать много лишней информации. Из-за этого курсор может начать дергаться, даже когда вы не трогаете манипулятор. При просмотре интернет-ресурсов этот изъян будет малозначимым, а вот в игре или во время рисования в Adobe Illustrator такие дергания могут негативно отразиться на результате (например, на битве с боссом, которому надо стрелять в маленькую уязвимую область). Справедливости ради стоит отметить, что рассмотренный недостаток легко устраняется. Необходимо или поставить мышь на нормальную плоскость, или понизить её разрешающую способность.

Какая же мышка лучше: лазерная или оптическая?


Несмотря на, казалось бы, тотальное превосходство лазерных моделей, их оптические «коллеги» тоже могут быть удобными и практичными. Давайте узнаем, для каких конкретно случаев подходит каждый из рассматриваемых типов.
  1. Оптические мышки подойдут офисным работникам, которые сидят за специализированными компьютерными столами. Такие устройства прекрасно выполнят свои основные функции при работе с документами или при изучении информации в интернете. Кроме того, оптические гаджеты подойдут некоторым геймерам. Не ярым игроманам, участвующим в крупных кибер-спортивных соревнованиях, а тем, кто играет в целях развлечения по пару часов в день. Для указанных случаев выбор данного типа мышки будет оправдан ещё и ценой. Согласитесь, зачем покупать дорогущий аксессуар для работы в Microsoft Office или для того, чтобы пару раз в неделю пострелять немцев в Call of Duty.
  2. Лазерные мышки в большей степени ориентированы на владельцев ноутбуков. Именно эти люди часто работают в кафе, в аэропортах или сидя на диване. В данных ситуациях лазерные аналоги, способные функционировать на любом типе поверхности, станут незаменимыми помощниками. Также, они подойдут ярым геймерам, участвующим в соревнованиях. Когда уровень двух игроков примерно равный, именно от скорости и точности работы мыши будет зависеть исход виртуального поединка. И вот здесь лазерные модели принесут куда больше пользы, нежели оптические.
Что касается дизайна лазерных или оптических мышек, то здесь оба вида примерно равны. Сегодня производители выпускают достаточно красивые модели, которые приятно и удобно держать в руке, так что выбор придётся делать на основе личных предпочтений по цвету, форме, количеству кнопок и так далее.

Стоимость оптических и лазерных мышек, выводы


Цена оптических мышек в России начинается от 200 рублей. За лазерные модели придётся заплатить как минимум 600 рублей, хотя лучше ориентироваться на девайсы, которые стоят 2–3 тысячи (чтобы точно получить качественный продукт).


Ну что же, вот мы и попытались разобраться в том, какая мышка лучше - оптическая или лазерная. Подводя итоги, можно сказать, что второй тип гаджетов превосходит первый почти по всем показателям, однако его покупка оправдана не всегда. Простым пользователям ПК вполне подойдут оптические устройства по средней цене. Но тем, кто часто работает за ноутбуком в разных местах или участвует в кибер-спортивных соревнованиях, лучше ориентироваться на лазерные манипуляторы, причем недешёвые.

омпьютерная мышь – скорей всего является самым массовым и широко популярным компьютерным девайсом. С течением времени, конструкция ее претерпела серьезные технологические изменения. Уже давно забыты мыши с прямым приводом из 2-х перпендикулярных металлических колес. Сегодня актуальны оптические и лазерные устройства. Какая компьютерная мышка лучше - лазерная или оптическая? сейчас попытаемся разобраться в различиях этих 2-х типов манипуляторов.

Виды поверхностей и работа мышек на них

Выбирая современную компьютерную мышь, не нужно забывать и о таком важном аспекте, как покрытие, на котором будет она работать. Оптическая мышка является совсем неприхотливой в этом вопросе и будет отлично работать в любых условиях, помимо зеркальной поверхности.

Лазерные мышки являются достаточно прихотливыми к условиям. Оптимальным вариантом для работы с таким помощником будет коврик и не простой, а специальный коврик. На не подходящей поверхности курсор этого манипулятора будет дрожать, часто дергаться.

Что лучше?

Это зависит от того или другого приложения и окружающей среды. Если вы обратите внимание на марку Logitech G, вы увидите, что там компания в основном фокусируется на светодиодных мышах, когда речь заходит о разных компьютерных играх. Тем не менее, у этого бренда есть и лазерные мыши, тот же Logitech предлагает небольшую часть устройств с лазером, которые ориентированы на работу с офисными приложениями.

Другая фирма-изготовитель Razer, предпочитает больше лазерную технологию, потому что она предлагает наиболее высокую чувствительность в играх.

Стоимость разных видов мышек

Выбор современных компьютерных мышек просто очень велик, и если отбросить в сторону все неудачные модели, а также неизвестные фирмы-изготовители, то можно быстро определиться с ценовой политикой для разных задач. Выбирая мышку для ежедневной или офисной работы, выложить придется от 100 до 180 грн.

Плюсы и минусы оптической мыши

Оптическая мышь обладает такими преимуществами:

  • небольшая цена;
  • нечувствительность к неровной поверхности.

Минусы девайса:

  • не любит зеркальных, стеклянных покрытий;
  • отличается небольшой точностью и скоростью;
  • небольшая чувствительность;
  • раздражающая подсветка;
  • большое энергопотребление.

Достоинства и недостатки лазерной мышки

Плюсы устройства:

  • возможность выполнения функций на разных покрытиях;
  • увеличенные точность и скорость;
  • значительная чувствительность;
  • регулировка разрешения;
  • не имеется подсветки;
  • малая энергозатратность;
  • разные дополнительные возможности.

Минусы устройства:

  • дорого стоит;
  • чувствительность к неровности разных поверхностей.

Подведение итогов

Подводя итоги можно уже ответить на вопрос: "Оптическая мышь или лазерная – что является лучше?" Учитывая все вышеизложенное, лучшим считается именно второй вариант. Для домашнего использования лазерные мыши можно назвать более удобными. При этом существует огромный ассортимент моделей в таких городах как Горловка, Макеевка, Донецк, и подобрать подходящий вариант в нашем интернет магазине не является проблемой.

Принцип работы мыши

Компьютерная мышь возникла одновременно с графическим интерфейсом. Она позволила управлять различными объектами на экране гораздо проще и удобнее, нежели при использовании клавиатуры. Перемещение устройства по поверхности передается с помощью специальной программы на компьютер и отображается на дисплее. Нажатие кнопок вызывает ответные действия, необходимые пользователю: закрывает или открывает окна, активизирует те или иные элементы.

Сейчас уже невозможно представить себе работу на ПК без удобной и функциональной мыши. Если первые модели представляли собой механическое устройство с парой кнопок, то в наши дни разнообразие манипуляторов просто поражает воображение! Можно выделить два основных типа «мышек», используемых сегодня в компьютерных системах: лазерные и оптические.

Чем отличается лазерная мышь от оптической?

По внешнему виду определить разницу может быть затруднительно, так как многообразие дизайнерских решений позволило снабдить мышки множеством дополнительных деталей:

  • верхними и боковыми кнопками;
  • колесиком прокрутки;
  • настраиваемыми переключателями;
  • световыми эффеками;
  • цветными накладками


Однако разница между ними обнаруживается в процессе работы. Это объясняется особенностями внутреннего устройства девайса и принципом его функционирования.

Давайте узнаем, чем отличается оптическая мышь от лазерной. Проведем сравнение по нескольким критериям:

  1. Принцип действия. В оптической мыши для снятия показаний о местоположении прибора используется световой диод и миниатюрная камера, что сопровождается характерным свечением при эксплуатации манипулятора. Лазерная мышь использует лазерный луч. При этом видимое свечение отсутствует.
  2. Разрешение. Для оптической мыши этот показатель составляет порядка 1200 dpi, для лазерной - до 2000 dpi.
  3. Скорость перемещения. Можно определить по расстоянию, на которое нужно передвинуть манипулятор для перемещения курсора через всю диагональ экрана. Оптической мышке понадобиться для этого 5 см, а лазерной не более 2-3 см.
  4. Используемая поверхность. Лазерный датчик исправно работает на любой поверхности, а оптика может давать помехи при работе с отражающими материалами.
  5. Энергопотребление. Лазерная мышь потребляет меньше энергии, чем оптическая. Это существенно влияет на продолжительность работы беспроводных манипуляторов, так как экономится заряд батареи.
  6. Цена. Стоимость лазерной мыши несколько выше, нежели оптической.