Доклад: Что такое звёзды. Интересное о звездах (8 фото) Сообщение по астрономии звезды

Солнце является единственной звездой в Солнечной системе, вокруг нее совершают свое движение все планеты системы, а также их спутники и другие объекты, вплоть до космической пыли. Если сравнить массу Солнца с массой всей Солнечной системы, то она составит порядка 99,866 процентов.

Солнце является одной из 100 000 000 000 звезд нашей Галактики и по величине стоит среди них на четвертом месте. Ближайшая к Солнцу звезда Проксима Центавра располагается на расстоянии четырех световых лет от Земли. От Солнца до планеты Земля 149,6 млн км, свет от звезды доходит за восемь минут. От центра Млечного пути звезда находится на расстоянии 26 тысяч световых лет, при этом она производит вращение вокруг него со скоростью 1 оборот в 200 миллионов лет.

Презентация: Солнце

По спектральной классификации звезда относится к типу «желтый карлик», по приблизительным расчетам ее возраст составляет чуть более 4,5 миллиардов лет, она находится в середине своего жизненного цикла.

Солнце, состоящее на 92% из водорода и на 7% из гелия, имеет очень сложное строение. В его центре находится ядро с радиусом примерно 150 000-175 000 км, что составляет до 25% от общего радиуса звезды, в его центре температура приближается к 14 000 000 К.

Ядро с большой скоростью производит вращение вокруг оси, причем эта скорость существенно превышает показатели внешних оболочек звезды. Здесь происходит реакция образования гелия из четырех протонов, вследствие чего получается большой объем энергии, проходящий через все слои и излучающийся с фотосферы в виде кинетической энергии и света. Над ядром находится зона лучистого переноса, где температуры находятся в диапазоне 2-7 миллионов К. Затем следует конвективная зона толщиной примерно 200 000 км, где наблюдается уже не переизлучение для переноса энергии, а перемешивание плазмы. На поверхности слоя температура составляет примерно 5800 К.

Атмосфера Солнца состоит из фотосферы, образующей видимую поверхность звезды, хромосферы толщиной порядка 2000 км и короны, последней внешней солнечной оболочки, температура которой находится в диапазоне 1 000 000-20 000 000 К. Из внешней части короны происходит выход ионизированных частиц, называемых солнечным ветром.

Когда Солнце достигнет возраста примерно в 7,5 - 8 миллиардов лет (то есть через 4-5 млрд лет) звезда превратится в «красного гиганта», ее внешние оболочки расширятся и достигнут орбиты Земли, возможно, отодвинув планету на более дальнее расстояние.

Под воздействием высоких температур жизнь в сегодняшнем понимании станет просто невозможна. Заключительный цикл своей жизни Солнце проведет в состоянии «белого карлика».

Солнце - источник жизни на Земле

Солнце самый главный источник тепла и энергии, благодаря которому при содействии других благоприятных факторов на Земле есть жизнь. Наша планета Земля вращается вокруг своей оси, поэтому каждые сутки, находясь на солнечной стороне планеты мы можем наблюдать рассвет и удивительное по красоте явление закат, а ночью, когда часть планеты попадает в теневую сторону, можно наблюдать за звездами на ночном небе.

Солнце оказывает огромное влияние на жизнедеятельность Земли, оно участвует в фотосинтезе, помогает в образовании витамина D в организме человека. Солнечный ветер вызывает геомагнитные бури и именно его проникновение в слои земной атмосферы вызывает такое красивейшее природное явление, как северное сияние, называемое еще полярным. Солнечная активность меняется в сторону уменьшения или усиления примерно раз в 11 лет.

С начала космической эры исследователей интересовало Солнце. Для профессионального наблюдения используются специальные телескопы с двумя зеркалами, разработаны международные программы, но самые точные данные можно получить вне слоев атмосферы Земли, поэтому чаще всего исследования проводятся со спутников, космических кораблей. Первые такие исследования были проведены еще в 1957 году в нескольких спектральных диапазонах.

Сегодня на орбиты выводятся спутники, представляющие собой обсерватории в миниатюре, позволяющие получить очень интересные материалы для изучения звезды. Еще в годы первого освоения космоса человеком были разработаны и запущены несколько космических аппаратов, направленных на изучение Солнца. Первыми из них была серия американских спутников, запуск которых стартовал в 1962 году. В 1976 году запущен западногерманский аппарат Гелиос-2, который впервые в истории приблизился к светилу на минимальное расстояние в 0,29 а.е. При этом были зафиксированы появление ядер легкого гелия при вспышках солнца, а также магнитные ударные волны, охватывающие диапазон 100 Гц-2,2 кГц.

Еще один интересный аппарат - солнечный зонд Ulysses, запущенный в 1990 году. Он выведен на околосолнечную орбиту и движется перпендикулярно полосе эклиптики. Через 8 лет после запуска аппарат завершил первый виток вокруг Солнца. Он зарегистрировал спиральную форму магнитного поля светила, а также постоянное его увеличение.

На 2018 год НАСА планирует запуск аппарата Solar Probe+, который приблизится к Солнцу на максимально приближенное расстояние - 6 млн. км (это в 7 раз меньше дистанции, достигнутой Гелиусом-2) и займет круговую орбиту. Для защиты от высочайшей температуры он оснащен щитом из углеродистого волокна.

Вряд ли найдется такой человек, который никогда не восхищался звездами, глядя в мерцающее ночное небо. Ими можно любоваться вечно, они загадочны и привлекательны. В этой теме вы познакомитесь с необычными фактами о звездах и узнаете много нового

Знаете ли вы, что большинство звезд, которые Вы рассматриваете ночью, являются двойными звездами? Две звезды кружатся друг вокруг друга, создавая точку гравитации, либо меньшая звезда ходит вокруг большой “главной звезды”. Иногда эти главные звезды тянут материю из меньших во время сближения друг с другом. Существует предел массы, который планета может выдерживать, не вызывая ядерную реакцию. Если бы Юпитер был большим, то, возможно, превратился бы в коричневого карлика, своего рода полузвезду, много лун назад

Такие процессы часто происходят в других солнечных системах, что подтверждается нехваткой в них планет. Большая часть материи, которая находится в поле тяготения главной звезды, собирается в одном месте, в итоге формируя новую звезду и двоичную систему. В одной системе может быть больше двух звезд, но все же двоичные системы счисления распространены шире


Белые Карлики, так называемые “мертвые звезды”. После красной гигантской фазы наша собственная звезда – Солнце – тоже станет белым карликом. Белые карлики имеют радиус планеты (как Земля, не как Юпитер), но плотность звезды. Такие удельные веса возможны благодаря электронам, отделяющимся от атомных ядер, которые они окружают. В результате увеличивается количество места, которое эти атомы занимают и создаётся большая масса при маленьком радиусе

Если бы Вы могли держать ядро атома в своей руке, то электрон кружился бы вокруг вас на расстоянии 100 метров или больше. В случае дегенерации электрона это пространство остается свободным. В итоге Белый карлик остывает и прекращает излучать свет. Эти массивные тела не могут быть замечены, и никто не знает, сколько их находится во вселенной.

Если звезда будет достаточно большой, чтобы избежать заключительной белой карликовой фазы, но слишком маленькой, чтобы избежать превращения в черную дыру, то будет образован экзотический тип звезды, известный как нейтронная звезда. Процесс образования нейтронных звезд несколько подобен Белым карликам, в котором они также постепенно деградируют - но по-другому. Нейтронные звезды формируются из ухудшающейся материи так называемого нейтрона, когда все электроны и положительно заряженные протоны отсеиваются, и только нейтроны формируют основу звезды. Плотность нейтронной звезды сопоставима плотности ядер атома.

У нейтронных звезд может быть масса, подобная нашему Солнцу или немного выше но их радиус составляет менее 50 километров: обычно 10-20. Чайная ложка этого нейтрона превышает в 900 раз массу Большой Пирамиды в Гизе. Если бы Вы наблюдали нейтронную звезду непосредственно, то увидели бы оба полюса, потому что нейтронная звезда работает как гравитационная линза, изгибая свет вокруг себя благодаря мощнейшей гравитации. Особый случай нейтронной звезды - пульсар. Пульсары могут вращаться со скоростью 700 оборотов в секунду, испуская мигающую радиацию – отсюда и их название

Eta Carinae - одна из самых больших звезд, обнаруженных на данный момент. Она в 100 раз тяжелее, чем наше Солнце и имеет приблизительно такой же радиус. Eta Carinae может сиять в в миллион раз ярче Солнца. Обычно эти гипермассивные звезды существуют весьма недолго, потому что они буквально сжигают себя, поэтому их называют Супернова. Ученые полагают, пределом является масса, в 120 раз превышающая массу Солнца – больше не может весить никакая звезда.

Звезда Pistol - гипергигант, подобный Eta Carinae, у которого нет возможности охлаждать себя. Звезда настолько горяча, что едва удерживается в целостном виде благодаря своей гравитации

В результате звезда Pistol испускает так называемый "солнечный ветер" (высокие частицы энергии, которые, например, создают Северное сияние). Она светит в 10 миллиардов раз сильнее нашего Солнца. Из-за массивных уровней радиации невозможно даже предположить, что в этой звездной системе когда-либо сможет существовать жизнь


В этой теме я изложил наиболее интересные факты о звездах, которые только смог найти. Надеюсь, вам было интересно

Введение 3

    Понятие звезды. Параметры звезд. Строение звезд 4

    Рождение звезд 6

    Старение и смерть звезд 8

    Эволюция звезд 10

    Двойные звезды 12

заключение 13

список литературы 14

Введение

В течение многих тысячелетий астрологи сверяли по звёздам жизни отдельных людей и целых государств, хотя и предупреждали при этом, что роль звёзд в предначертании судьбы велика, но не абсолютна. Звёзды советуют, а не приказывают, говорили они.

Но шло время, и люди стали всё чаще смотреть на звезды с другой, менее романтической точки зрения. Антуан де Сент-Экзюпери сказал об этом: «Вы проинтегрировали орбиту звезды, о жалкий род исследователей, и звезда перестала быть для вас живым светилом». Действительно, звёзды стали рассматриваться как физические объекты, для описания которых вполне достаточно известных законов природы.

Астрономы не в состоянии проследит жизнь одной звезды от начала и до конца. Даже самые короткоживущие звёзды существуют миллионы лет – дольше жизни не только одного человека, но и всего человечества. Однако учёные могут наблюдать много звёзд, находящихся на самых разных стадиях своего развития, - только что родившиеся и умирающие. По многочисленным звездным портретам они стараются восстановить эволюционный путь каждой звезды и написать её биографию.

Их можно увидеть темной, безоблачной ночью на небе тысячи. Звезды- это огромные раскаленные газовые шары, такие же, как наше Солнце, но светят они намного слабее Солнца, потому что расположены гораздо дальше от нас. Даже от ближайших к нам звезд свет идет целые годы. Мы смотрим на звезды сквозь слой воздуха, который все время находиться в движении, поэтому свет звезд непостоянен – нам кажется, что они мерцают.

Понятие звезды. Параметры звезд. Строение звезд.

Более девяти десятых вещества нашей Галактики сосредоточено в звездах; есть галактики, в которых на звезды приходится 99,9% массы. Мир звезд многообразен, но все же большинство из них подобно нашему Солнцу.

Солнце и любая другая подобная ему звезда - это сферическая масса горячего газа, удерживаемого его собственным тяготением. Тяготение стремится сжать газ, сблизить, насколько это возможно, все его частицы. Давление горячего газа действует, очевидно, в противоположном направлении, оно стремится расширить газ. Сила тяготения направлена к центру звезды, а сила давления наружу; в их противоборстве устанавливается и поддерживается равновесие, в котором звезда может пребывать миллионы и миллиарды лет. В недрах Солнца давление достигает десяти миллиардов атмосфер, а температура - четырнадцати миллионов градусов. Высокое давление и высокая температура поддерживаются в центральной области благодаря непрерывно идущим ядерным реакциям превращения водорода в гелий.

ПАРАМЕРТЫ

Основные параметры звёзд – масса, радиус, светимость, эффективная температура, спектральный класс, звёздная величина. Точные числовые значения некоторых параметров звёзд из-за их значительной удалённости определить крайне сложно, а порой даже невозможно, поэтому при их описании часто пользуются относительными значениями, например в сравнении с Солнцем, как типичной звёздой главной последовательности.

Масса – это основной параметр, который определяет всю эволюцию звезды, процессы, происходящие внутри неё, продолжительность жизни, а также другие параметры на всех этапах ее существования. Массы звёзд составляют приблизительно от 1/20 до 100 масс Солнца. Нижний предел – это фактически то минимальное значение массы, при котором благодаря гравитационной энергии ядро будущей звезды способно нагреться до той температуры, при которой возможно поддержание термоядерной реакции.

Радиусы звёзд варьируются в более широких пределах, нежели массы. Звёзды-карлики могут иметь радиусы в 10 раз меньше солнечного, в то время как звёзды-гиганты в 1000 раз больше. Как следствие, светимость может быть как в 10 тыс. раз меньше, так и в 100 тыс. раз больше, чем у Солнца. В зависимости от стадии эволюции размеры звезды могут существенно различаться.

Важной характеристикой звезды, как объекта на небе, является звёздная величина . Это мера яркости звезды, наблюдаемой с Земли. Невооруженным глазом при благоприятных условиях можно рассмотреть звёзды до 6-й величины, а самые яркие звёзды на небе имеют звездную величину равную 0 и –1. К примеру, звёзды всем известного ковша Большой Медведицы – это звёзды в среднем 2-й звёздной величины. Помимо этого параметра, существует ещё и абсолютная звёздная величина . Она отражает собственную светимость звезды и определяется как визуальная звёздная величина, которую эта звезда имела бы при наблюдении с расстояния 10 парсек (1 парсек = 3,2616 св. года).

СТРОЕНИЕ

Звёзды – раскаленные газовые шары, источником энергии и излучения в которых являются термоядерные реакции, главным образом превращение водорода в гелий. Этот процесс происходит в центре звезды, где температура достигает 15 млн. кельвинов (0,01 гр. Цельсия соответствует 273,16 кельвинам). Всё вещество при такой температуре и значительном давлении фактически находится в состоянии плазмы, ионизированного газа. Процесс протекания термоядерной реакции несколько отличается у звёзд массы Солнца и у более массивных (в нем принимают участие более тяжелые элементы, такие как углерод и азот), однако результом везде является синтез ядра гелия из четырёх ядер водорода при выделении энергии. Содержание водорода по массе в звёздах класса Солнца составляет примерно 70-75%, остальное – гелий и другие элементы, содержание которых обычно не превышает 1,5-2%.

Видимая поверхность звезды – фотосфера . Температура фотосферы связана с такой характеристикой звезды, как спектральный класс . Всего основных семь классов: O, B, A, F, G, K, M (плюс десять подклассов от 0 до 9). Также существует разделение на C0-C9 (углеродные), S-звезды (с полосами ZrO в спектре) и ещё несколько не часто встречающихся. O – самые горячие с эффективной температурой более 25000К и имеют бело-голубой цвет, M – самые холодные с эффективной температурой менее 3500К и имеют красный цвет. К примеру, Солнце имеет класс G2 с эффективной температурой около 5700К. Спектральный класс связан с классом светимости звезды, обозначается римскими цифрами от Ia и Ib (сверхгиганты) до VII (белые карлики). Связь эту можно проследить на диаграмме Герцшпрунга – Ресселла . Также эта диаграмма может показывать зависимость между цветом или температурой звезды и ее абсолютной звёздной величиной.

Рождение звезд

Солнце, Луна, планеты и звезды известны людям с древнейших времен. Но осознать тот факт, что звезды более или менее похожи на Солнце, только значительно дальше отстоят от Земли, удалось лишь благодаря тысячелетнему развитию науки. Теперь мы знаем: звезды - это плазменные шары, находящиеся в состоянии устойчивого равновесия, излучение которых поддерживается внутренним источником энергии. Но источник этот не вечен, и постепенно истощается. Чем это чревато для звезд? Какие изменения ждут их?

Век даже самой короткоживущей звезды многократно превышает эру существования человечества. Поэтому проследить путь какой-либо звезды от ее рождения до смерти просто невозможно. Астрономы собирают сведения о космических объектах и их судьбах по крупицам - с помощью телескопов, установленных на Земле и вынесенных на дальние орбиты. И все же рассказывают о себе звезды скупо. Многие из них ведут себя спокойно, однако есть и такие, чья жизнь полна неожиданностей: они то разгораются, то меркнут, то увеличиваются, то уменьшаются, случается, что и взрываются - тогда их яркость буквально на глазах возрастает в десятки, сотни раз. Не так давно были открыты пульсары, излучающие энергию короткими вспышками...

Чем объяснить такое разнообразие светил? Не каприз ли это природы - обилие совершенно не похожих друг на друга космических объектов? Или все это разные их формы, соответствующие разным стадиям жизни звезд?

Рождение звезды, как правило, скрыто завесой из космической пыли, поглощающей свет. Только с появлением инфракрасной (ИК) фотометрии и радиоастрономии стали доступны изучению явления в газопылевых комплексах, имеющих, по всей вероятности, отношение к рождению звезд. Исследователи выделили области, где большинство составляют молодые формирующиеся объекты - протозвезды. Основную часть своей жизни они скрыты медленно оседающей на них пылевой оболочкой. Она «гасит» излучение ядра, нагревается до сотен градусов и в соответствии с этой температурой излучает сама. Именно это излучение и удается наблюдать в ИК-диапазоне, и это едва ли не единственный способ обнаружения протозвезд.

В 1967 году в Туманности Ориона была обнаружена инфракрасная звезда (с температурой излучения 700 градусов Кельвина), примерно в тысячу раз превосходящая Солнце по светимости и диаметру. Это открытие положило начало изучению целого класса протозвездных объектов.

В дальнейшем выяснилось, что в областях Млечного Пути (это наша Галактика), где рождение звезд представляется наиболее вероятным, существуют компактные источники, излучающие не только в инфракрасном, но и в радиодиапазоне. Это обнадеживало, ведь радиосигналы, в отличие от других частот, не искажаются поглощающими массами пыли. Информация, собранная радиотелескопами, позволила астрономам утверждать: Туманность Ориона, насыщенная объектами, совершенно невидимыми в оптическом диапазоне, представляет собой одну из «фабрик по производству звезд».

Предполагается, что сложный процесс формирования звезд может происходить в любом газопылевом облаке достаточно большого размера. Спусковым механизмом для начала формирования звезды может служить, например, ударная волна - своеобразное эхо далекого взрыва сверхновой. Такая волна нарушает зыбкое равновесие - облако разделяется на фрагменты, каждый из которых начинает сжиматься. Скорость сжатия газа зависит от плотности материи и наличия магнитного поля. Это - самый первый отрезок на пути образования звезд.

Должны пройти миллионы лет, прежде чем в недрах формирующегося объекта создадутся условия, необходимые для запуска первых ядерных реакций. Именно тогда и наступит «день рождения» звезды. Однако потребуются еще миллионы лет на то, чтобы она накопила энергию и высвободилась из окружающего ее пылевого кокона. Подтверждением описанного процесса образования светил из межзвездной среды служат обширные скопления - ассоциации массивных горячих звезд высокой светимости.

Для 90% звезд, так же как и для Солнца, источником энергии являются термоядерные реакции, а именно превращение водорода в гелий. Солнце, которому уже 4,5 миллиарда лет, достаточно стабильно: размеры, масса и температура поверхности практически не меняются.

Астрономы, следящие за характеристиками нашего светила, приходят к выводу: энергии, производимой в недрах Солнца, хватит на то, чтобы еще очень долго поддерживать постоянное излучение. Но запасы водорода предельны, и когда они заканчиваются, в жизни звезд начинается другая фаза.

Старение и смерть звезд

В звездах разной массы процесс старения будет идти по-разному. В тех, чья масса равна одной-двум солнечным, образуется гелиевое ядро. На его поверхности в тонком сферическом слое продолжается горение водорода, обеспечивающее светимость звезды. Внешние ее области начинают расширяться, и поверхностная температура уменьшается. По мере выгорания водорода гелиевое ядро сжимается, плотность его растет, температура повышается, но массы звезды недостаточно, чтобы обеспечить в ядре температуру, достаточную для горения. И в какой-то момент, хотя водород еще есть, его горение прекращается. Ядро теряет способность удерживать расширяющуюся оболочку, и постепенно начинается их разделение.

Планетарная туманность представляет собой газовую оболочку, в центре которой располагается звезда с достаточно высокой температурой. Оболочка - это наружная часть атмосферы бывшего красного гиганта, а центральная звезда - его ядро, оставшееся после отделения атмосферы. Газ оболочки светится под воздействием ионизующего излучения звезды. В процессе эволюции оболочка расширяется со скоростью от 10 до 50 километров в секунду, звезда сжимается, а температура ее растет. Так, в конце концов, в центре каждой планетарной туманности образуется белый карлик - компактная звезда с температурой порядка 100 000 градусов Кельвина.

По предсказаниям теоретиков, судьба более массивных звезд может оказаться весьма драматичной. Так, в звездах, превосходящих по массе Солнце в десять раз, превращение водорода в гелий происходит очень быстро, затем наступает следующий этап - гелий превращается в углерод, а атомы углерода образуют более тяжелые элементы. Реакции идут непрерывно, но постепенно сходят на нет, когда образуется железо. На этой стадии ядро звезды состоит из ионов железа.

Устойчивость звезды определяется равновесием между силами гравитации и давления нагретого газа, которое обеспечивается электронами. Но ядра железа могут захватывать электроны из окружающего газа, давление уменьшается, и сила тяжести берет верх. Постепенно все вещество в центре звезды оказывается состоящим из нейтронов. При достижении критического значения наступает коллапс - необратимое, практически мгновенное сжатие. При этом выделяется огромное количество энергии, внешняя оболочка звезды взрывается, разлетаясь в пространстве и обнажая центральное ядро - нейтронную звезду. Происходит взрыв сверхновой. (Результатом такого взрыва, наблюдавшегося на Земле в 1054 году, стала так называемая Крабовидная туманность.)

В наше время существование нейтронных звезд и их связь со вспышками сверхновых не вызывают сомнений. А в 1932 году гипотеза советского физика Л.Д. Ландау об образования подобных космических объектов воспринималась как чисто теоретическая абстракция.

Говоря о смерти звезд, нельзя не упомянуть и о черных дырах. Теоретически представляется возможным, что к концу своего существования звезда имеет массу слишком большую, чтобы стать белым карликом или стабильной нейтронной звездой, а потому ее остатки коллапсируются в черную дыру - объект, обладающий мощным гравитационным полем и не дающий вырваться наружу никакому излучению.

Умирающие звезды превращаются в компактные объекты, выбрасывающие в пространство часть своей массы и обеспечивающие тем самым рождение следующих звездных поколений.

Эволюция звезд

Звёзды зарождаются в газопылевых облаках межзвездной среды благодаря сгусткам вещества, образующихся в результате внешних возмущений, например, после взрыва сверхновых. Вещество под действием гравитационных сил начинает уплотняться и нагреваться. При достижении определенной массы протозвезды температура достигает того значения, при котором начинаются ядерные реакции. Продолжительность этого процесса зависит от массы. У звёзд массы Солнца на это уходит до 30 млн. лет, тогда как у более массивных в сто раз меньше. Нужно заметить, что у звёзд с большей массой все процессы идут намного быстрее, чем у менее массивных. Последующий этап жизни звезды проходит без заметных внешних изменений довольно продолжительный срок (около 10 млрд. лет у таких звёзд как Солнце, и не более 0,5 млрд. лет у в несколько раз большей массой). В этот период идет процесс сжигания водорода в ядре звезды. При этом яркость и размер остаются постоянными, так как гравитационные силы уравновешиваются давлением газа внутри звезды. Параметры звезды в этот период определяются одной из точек так называемой главной последовательности на диаграмме Герцшпрунга – Ресселла.

По мере того как весь водород в ядре будет превращаться в гелий оно будет сжиматься, и нагреваться, вследствие увеличения молекулярного веса. Под действием увеличившейся температуры, окружающий ядро газ расширится, и звезда значительно увеличит свои размеры, прилегающий к внешним слоям газ остынет, звезда станет красным гигантом, светимость которого останется примерно такой же из-за значительных размеров. Большие размеры звезды приведут к большой потери энергии, в результате чего она со временем опять может уменьшиться. На этом этапе на диаграмме Герцшпрунга – Ресселла звезда перемещается по одному из так называемых эволюционных треков . При возникновении внутренней нестабильности во время расширения внешние слои звезды отделяются, образуется планетарная туманность , видимая в мощные телескопы похожей на диски планет.Оставшееся ядро становится белым карликом и будет постепенно остывать. Несмотря на значительную температуру, светимость белых карликов низкая из-за небольших размеров, сопоставимых с размером Земли. Максимально возможная масса таких звёзд не превышает 1,4 от солнечной массы.

Все вышесказанное справедливо для звёзд массы Солнца. Если же масса звезды превышает солнечную не менее чем в 8 раз, конечные этапы ее эволюции несколько отличаются. Так, после того как весь водород в ядре превратиться в гелий, ядро сожмется, а температура внутри него повысится до такой степени, что начнется не только сжигание водорода практически во всем объеме звезды, но и превращение гелия в более тяжелые элементы, такие как углерод и кислород, а потом и в кремний. Температура ядра при этом может достигать нескольких сотен млн. кельвинов. В какой-то момент времени все топливо будет израсходовано, ядро станет железным, система станет нестабильной и звезда в течение долей секунды сожмется. Сжатие будет происходить до тех пор, пока плотность не достигнет критического уровня, после чего произойдет отдача, сопровождаемая гигантским взрывом, наблюдаемым как взрыв сверхновой (лат. super nova).

Яркость вспышки при взрыве сверхновой может превосходить яркость целой галактики, а светимость в миллиарды раз выше солнечной. Выброс оболочки происходит со скоростью в несколько тысяч км/с. Наблюдаемая вспышка заметна в течение нескольких недель. Вообще же, взрыв сверхновой – крайне редкое явление, которое можно наблюдать без соответствующего оборудования всего несколько раз за тысячелетие. Пример - сверхновая 1987А, наблюдаемая с февраля 1987 года в галактике Большое Магелланово Облако в южном созвездии Золотой Рыбы на расстоянии 170 тысяч световых лет.

Оставшееся после взрыва ядро превращается в нейтронную звезду с массой от 1,5 до 3 масс Солнца и диаметром несколько км. Из-за сильного магнитного поля и быстрого вращения нейтронные звёзды наблюдаются как всплески радио- и рентгеновского излучения, их иногда называют еще пульсарами . Если масса оставшегося ядра превысила 3 солнечных массы, то звезда становится чёрной дырой . Гравитационные силы черной дыры столь значительны, что они поглощают любое световое излучение, и непосредственное наблюдение этих объектов с использованием оптических средств невозможно. Выпадение вещества на чёрные дыры сопровождается выделением огромной энергии, которое можно обнаружить в виде рентгеновского и гамма-излучения. В таких областях в условиях гравитации стремящейся к бесконечности все наши представления о пространстве и времени, очевидно, не смогут найти подтверждения, а сами области, возможно, могут представлять собой некие пространственные дыры, сквозь которые возможно проникновение в другие области Вселенной или Антивселенной, в которых составляющая силы гравитации по отношению к нашим представлениям будет иметь отрицательное значение. Но возможно, что чёрные дыры - это пространственно-энергетические ловушки, которые после достижения ими определённой критической массы и энергии вызовут грандиозный вселенский катаклизм при выделении накопленной энергии. Предполагается, что в центрах многих галактик имеются чёрные дыры, в том числе и в нашей.

Двойные звёзды

Во Вселенной примерно половина всех звёзд входит в состав двойных или кратных систем. В них звёзды вращаются вокруг общего центра масс. Визуально-двойные звезды расположены достаточно далеко друг от друга и могут наблюдаться отдельно, период их обращения составляет несколько десятков лет. Если одна звезда значительно меньше другой и не доступна для непосредственного наблюдения, то ее присутствие можно обнаружить по непрямолинейному движению более яркой. Обычно же двойные системы обнаруживаются по периодическому смещению спектральных линий. Большая часть двойных звёзд являются тесными парами. В таких системах возможно перетекание вещества из поверхностных слоев массивной звезды к компаньону. Вещество под действием гравитационных сил вращающейся малой звезды закручивается вокруг нее, и образуется так называемый аккреционный диск. Большая звезда при этом может потерять значительную массу и превратиться даже в белого карлика. Иногда такие процессы приводят к образованию новых (лат. nova), когда происходит значительный нагрев звезды и последующая вспышка, сопровождаемая выбросом оболочки со скоростью до 2 тысяч км/с и увеличением звёздной величины в несколько раз (до 10 - 15), но, конечно же, даже близко не сопоставимой со взрывом сверхновой. Этот процесс может происходить неоднократно с образованием повторных новых, а также новоподобных с менее значительным увеличением звёздной величины.

Также с двойными звёздами напрямую связано такое понятие как переменная звезда. Хотя нужно отметить, что и к одиночным звездам, преимущественно на поздних стадиях эволюции, в полной мере может подходить это определение (пример: цефеиды, по аналогии с Дельта Цефея, когда светимость увеличивается, а затем уменьшается почти на целую звездную величину в течение нескольких дней), всё же, чаще всего оно применимо к двойным или кратным системам. Выражается это в периодическом изменении светимости звезды, связанном в первую очередь с неоднородностью ее внутренней структуры и стадии эволюционного развития, а также влиянием на нее звезды-компаньона. Так в затменных двойных вращение пары происходит таким образом, что одна звезда периодически проходит перед другой относительно наблюдателя, что приводит к изменению видимой светимости. Наиболее яркий пример: Алголь – Бета Персея, расстояние 92,8 св. года, состоящая из гиганта класса B и карлика класса G, между которыми происходит передача вещества, а также третьей звезды. Видимая светимость в этой системе изменяется от 3,5 до 2,2 звёздной величины с периодом около трех суток. Вообще же периодичность изменений в двойных и кратных системах может наблюдаться от нескольких суток до нескольких месяцев, а изменение светимости до нескольких звёздных величин, хотя обычно светимость изменяется в гораздо более.

Заключение

Наше Солнце – самая обычная звезда среди миллионов других звезд. В центре всех звезд частицы газа и водорода ударяются друг о друга и выделяют огромное количество ядерной энергии. Благодаря этому звезды так ярко сияют. Звезды несутся сквозь космическое пространство с колоссальными скоростями, но нам они кажутся неподвижными – это тоже следствие их невероятной удаленности от нас.

Звезды возникают постоянно. Сначала это просто облака газа и пыли в космическом пространстве. Как только подобные сгустки вещества начинают собираться вместе, возникающая сила притяжения усиливает этот процесс. В центре такого образования газ становиться все горячее и плотнее, и, в конце концов, его температура и давление повышаются настолько сильно, что начинается процесс ядерного синтеза. Его начало знаменует собой рождение новой звезды. Нередко множество звезд возникает вблизи друг от друга, в гигантском облаке.

И все-таки звезды не живут вечно. В конце концов, водородное топливо в их ядрах исчерпывается. Когда это происходит, звезда изменяется и постепенно умирает. Старые звезды раздуваются, превращаясь в красные гиганты. Они могут развеять часть своего газа в пространстве в виде большого туманного кольца. Звезды значительно более массивные, чем Солнце, заканчивают свое существование грандиозным взрывом- сверхновой. Когда такая звезда появляется, она за несколько дней излучает света в миллион раз больше, чем Солнце. За последние 1000 лет в нашей Галактике было надежно зафиксировано появление всего лишь трех сверхновых.

Благодаря развитию наблюдательных технологий астрономы получили возможность исследовать не только видимое, но и не видимое глазу излучение звёзд. Сейчас уже многое известно об их строении и эволюции, хотя немало остаётся и непонятного.

Список литературы

Источников энергии и механизмов эволюции звезд , звездных... эмпирические зависимости между параметрами звезд (диаграмма Герцшпрунга-Рессела... уточнялись и усложнялись сами фундаментальные понятия , фигурирующие в космологии: ...

  • Звезды и их эволюция (3)

    Реферат >> Биология

    Ураном; полученная на основании измерения параметров орбиты масса Сириуса А оказалась в... , удерживающая звезду от коллапса. Своим внутренним строением звезда теперь напоминает... И этот незначительный по космическим понятиям объём «набит» таким количеством...

  • Философия. Философские понятия , категории и глобальные проблемы

    Шпаргалка >> Философия

    И ученого. 24. Понятие материи Современная наука о строении материи Движение ... , гравитационными полями, образуют звезды , представляющие особый уровень организации... в соответствии с обозначенными восемью параметрами , можно описать следующим образом. ...

  • Физика солнца и звезд

    Реферат >> Астрономия

    Перпендикулярный направлению на звезду . С понятием параллакса связано название одной... доли процента. Строение звезд . Модели некоторых типов звезд . Строение звёзд зависит от... , является наиболее изученной звездой . По всем параметрам Солнце – самая обычная...

  • У Плешакова возникла хорошая идея - создать для детей атлас, по которому легко определять звезды и созвездия. Наши учителя эту идею подобрали и создали свой атлас-определитель, который еще более информативен и нагляден.

    Что такое созвездия?

    Если в ясную ночь поднять в небо глаза, то можно увидеть множество сверкающих, различных по размеру огоньков, которые словно россыпь бриллиантов, украшают небосвод. Эти огоньки называются звезды. Часть из них как-будто собраны в скопления и при длительном рассматривании их можно разделить на определенные группы. Такие группы человек назвал «созвездия». Некоторые из них могут напоминать форму ковша или затейливые очертания животных, однако, во многом, это лишь плод воображения.

    Много веков астрономы старались изучить такие скопления звезд и придавали им мистические свойства. Люди пытались их систематизировать и найти общую закономерность, так и появились созвездия. На протяжении долгого времени созвездия тщательно изучались, некоторые разбивали на более маленькие, и они переставали существовать, а некоторые после уточнения просто корректировались. Например, созвездие Арго было поделено на более мелкие созвездия: Компас, Киль, Парус, Корма.

    История происхождения названий созвездий также очень интересна. Для облегчения запоминания им давали названия, объединённые одной стихией или литературным произведением. Например, было замечено, что в период сильных дождей Солнце встает со стороны определенных созвездий, которым дали следующие названия: Козерог, Кит, Водолей, созвездие Рыб.

    Чтобы привести все созвездия к определенной классификации, в 1930 году на заседании Международного астрономического союза было принято решение об официальной регистрации 88 созвездий. Согласно принятому решению созвездия состоят не из групп звезд, а представляют собой участки звездного неба.

    Какие бывают созвездия?

    Созвездия различаются по числу и яркости звезд, входящих в его состав. Выделяют 30 самых заметных групп звезд. Наиболее протяжённым по площади созвездием считается Большая Медведица. В ее состав входит 7 ярких и 118 видимых невооруженным взглядом звезд.

    Самое маленькое созвездие, расположенное в южном полушарии, называют Южный Крест и увидеть его невооруженным глазом невозможно. Оно состоит из 5 ярких и 25 менее заметных звезд.

    Малый Конь является самым маленьким созвездием северного полушария и состоит из 10 слабых звезд, которых можно увидеть невооруженным взглядом.

    Самым красивым и ярким считается созвездие Ориона. В его состав входит 120 звезд, видимых невооруженным взглядом и из них 7 очень ярких.

    Все созвездия условно делят на расположенные в южном или северном полушарии. Тем, кто живет в южном полушарии Земли, не видны скопления звезд, расположенные в северном и наоборот. Из 88 созвездий, 48 находятся в южном полушарии, а 31 - в северном. Оставшиеся 9 групп звезд расположены в обеих полушария. Северное полушарие легко определить по Полярной звезде, которая всегда очень ярко светит на небосклоне. Она является крайней звездой на ручке ковша Малой Медведицы.

    В связи с тем, что Земля вращается вокруг Солнца, которое и не дает увидеть некоторые созвездия, происходит смена времен года и изменяется положение этого светила на небосклоне. Например, зимой расположение нашей планеты на околосолнечной орбите является противоположным таковому летом. Поэтому, в каждое время года можно увидеть только определенные созвездия. Например, в летний период на ночном небе можно увидеть образованный звездами Альтаир, Вега и Денеб треугольник. В зимнее время возникает возможность полюбоваться на бесконечно красивое созвездие Орион. Поэтому иногда и говорят: осенние созвездия, зимние, летние или весенние созвездия.

    Созвездия лучше всего видны в летнее время и желательно их наблюдать на открытом пространстве, вне города. Некоторые звезды можно увидеть невооруженным взглядом, а для некоторых может понадобиться телескоп. Лучше всего видны созвездия Большой и Малой медведицы, а также Кассиопея. Осенью и зимой хорошо видны созвездия Тельца и Орион.

    Яркие созвездия, которые видно в России

    К самым красивым созвездиям северного полушария, видимым в России, относятся: Орион, Большая медведица, Телец, Большой пес, Малый пес.

    Если всмотреться в их расположение и дать волю фантазии, то можно увидеть сцену охоты, которая, словно на древней фреске, запечатлена на небосклоне уже более двух тысяч лет. Отважный охотник Орион всегда изображен в окружении зверей. Справа от него бежит Телец, и охотник замахивается на него дубиной. У ног Ориона расположена верные Большой и Малый псы.

    Созвездие Орион

    Это самое большое и красочное созвездие. Его хорошо видно осенью и зимой. Орион можно увидеть над территорией всей России. Расположение его звезд напоминает очертания человека.

    История образования этого созвездия берет свое начало из древнегреческих мифов. Согласно им, Орион был смелым и сильным охотником, сыном Посейдона и нимфы Эмвриалы. Он часто охотился вместе с Артемидой, но однажды, за победу над ней во время охоты, был поражен стрелой богини и погиб. После смерти он и был превращен в созвездие.

    Ярчайшей звездой Ориона является Ригель. Она в 25 тыс. раз ярче Солнца и в 33 раза больше его по размеру. Эта звезда имеет голубовато-белое свечение и считается сверхгигантской. Однако, несмотря на такие внушительные размеры, она значительно меньше, чем Бетельгейзе.

    Бетельгейзе украшает правое плечо Ориона. Она в 450 раз больше диаметра Солнца и если его поставить на место нашего светила, то эта звезда займет место четырех планет до Марса. Светит Бетельгейзе в 14000 раз ярче, чем Солнце.

    В созвездие Орион входят также туманность и астеризмы.

    Созвездие Телец

    Еще одним большим и невообразимо красивым созвездием северного полушария является Телец. Оно располагается на северо-западе от Ориона и находится между созвездиями Овен и Близнецы. Недалеко от Тельца расположены таким созвездия, как: Возничий, Кит, Персей, Эридан.

    Это созвездие в средних широтах можно наблюдать на протяжении практически всего года, исключение составляет вторая половина весны и начало лета.

    История возникновения созвездия восходит к древним мифам. В них говорится о Зевсе, превратившимся в тельца, для того, чтобы похитить богиню Европу и привести ее на остров Крит. Впервые это созвездие описал Евдокс - математик, живший задолго до нашей эры.

    Самой яркой звездой не только этого созвездия, но и других 12 групп звезд является Альдебаран. Она расположена на голове Тельца и раньше ее называли «глазом». Альдебаран в 38 раз больше диаметра Солнца и в 150 раз его ярче. Эта звезда находится на расстоянии 62 световых лет от нас.

    Второй по яркости звездой созвездия является Нат или Эль-Нат (бычьи рога). Она располагается вблизи Возничего. Она ярче Солнца в 700 раз и больше его в 4,5 раза.

    В пределах созвездия расположены два невероятно красивых рассеянных скопления звезд Гиады и Плеяды.

    Возраст Гиад составляет 650 млн. лет. Их можно без труда найти на звездном небе благодаря Альдебарану, который прекрасно виден среди них. В их состав входит около 200 звезд.

    Плеяды получили свое название благодаря девяти частям. Семь из них названы в честь семи сестер Древней Греции (Плеяд), а еще две - в честь их родителей. Плеяды очень хорошо заметны зимой. Они включают около 1000 звездных тел.

    Не менее интересным образованием в созвездии тельца является Крабовидная туманность. Она образовалась после взрыва сверхновой в 1054 г. и была открыта в 1731 г. Удаленность туманности от Земли составляет 6500 световых лет, а диаметр ее около 11 св. лет.

    Это созвездие относится к семейству Ориона и граничит с созвездиями Орион, Единорог, Малый Пес, Заяц.

    Созвездие Большого Пса впервые было обнаружено Птолемеем во втором веке.

    Существует миф, согласно которому Большой Пес раньше был Лелапом. Это был очень быстрый пес, который мог догнать любую добычу. Однажды он погнался за лисицей, которая не уступала ему в скорости. Итог гонки был предрешен, и Зевс превратил обоих животных в камень. Пса он поместил на небо.

    Созвездие Большого пса очень хорошо видно зимой. Самой яркой звездой не только этого, но и всех других созвездий является Сириус. Она имеет голубоватый блеск и расположена довольно близко к Земле, на расстоянии 8,6 световых лет. По яркости в нашей солнечной системе ее превосходят Юпитер, Венера, Луна. Свет от Сириуса доходит до Земли через 9 лет, и он в 24 раза сильнее солнечного. У этой звезды есть спутник, который называется «Щенок».

    С Сириусом связывают образование такого понятия, как «Каникулы». Дело в том, что эта звезда появлялась на небосклоне в период летней жары. Поскольку Сириус в переводе с греческого называется «канис», то этот период греки стали назвать каникулами.

    Созвездие Малый Пес

    Малый Пес граничит с такими созвездиями, как: Единорог, Гидра, Рак, Близнецы. Это созвездие олицетворяет собой животное, которое вместе с Большим Псом следует за охотником Орионом.

    История образования этого созвездия, если опираться на мифы очень интересна. Согласно им, Малый Пес - это Мэра, собака Икария. Этого человека научил делать вино Дионис и этот напиток получался очень крепким. Однажды его гости решили, что Икария решил их отравить и убили его. Мэра очень грустил по хозяину и вскоре умер. Зевс расположил его в виде созвездия на звездном небе.

    Лучше всего это созвездие наблюдать в январе и феврале.

    Самыми яркими звездами этого созвездия являются Порцион и Гомейса. Порцион находится на расстоянии 11,4 световых лет от Земли. Он несколько ярче и горячее Солнца, но физически мало от него отличается.

    Гомейса видима невооруженным взглядом и светится бело-голубым светом.

    Созвездие Большая Медведица

    Большая Медведица, напоминающая по форме ковш, является одним из трех самых крупных созвездий. Оно упоминается в трудах Гомера и в Библии. Это созвездие очень хорошо изучено и имеет большое значение во многих религиях.

    Оно граничит с такими созвездиями, как: Водопас, Лев, Гончие Псы, Дракон, Рысь.

    Согласно древнегреческим мифам, Большая Медведица ассоциируется с Каллисто, красивой нимфой и возлюбленной Зевса. Его жена Гера в наказание превратила Каллисто в медведя. Однажды, этот медведь наткнулся в лесу на Геру и их с Зевсом сына, Аркаса. Чтобы избежать трагедии, Зевс превратил сына и нимфу в созвездия.

    Большой ковш образуют семь звезд. Наиболее яркими из них являются три: Дубхе, Алькаид, Алиот.

    Дубхе является красным гигантом и указывает на Полярную звезду. Она находится в 120 световых годах от Земли.

    Алькаид, третья по яркости звезда созвездия, выражает конец хвоста Большой Медведицы. От Земли она находится на расстоянии в 100 световых лет.

    Алиот - самая яркая звезда в созвездии. Она олицетворяет собой хвост. Из-за своей яркости она применяется в навигации. Алиот светит в 108 раз ярче, чем Солнце.

    Эти созвездия являются наиболее яркими и красивыми в северном полушарии. Их прекрасно можно увидеть невооруженным взглядом в осеннюю или морозную зимнюю ночь. Легенды их образования позволяют разгуляться фантазии и представить, как могучий охотник Орион вместе со своими верными псами бежит за добычей, а Телец и Большая Медведица внимательно наблюдают за ним.

    Россия находится в северном полушарии, и в этой части неба нам удается видеть лишь некоторые от всех существующих на небе созвездий. В зависимости от времени года меняется только их положение на небе.

    Звезды – это не только красивое свечение и ориентир на ночном небе, они еще и основа любой жизни. Это подтверждает пока лишь одно небесное светило – наше Солнце, но делает это уверено, принося ежедневно нам свет и тепло на протяжении уже многих миллионов лет. Но какие интересные факты про звезды нам еще известны?

    1. Все звезды насколько бы разными они не были, состоят всегда из одной и той же материи. В начальном их состоянии 74% занимает водород, 25% уходит под гелий, а 1% составляют газообразные примеси различного рода. На протяжении своего существования звезды постепенно перерабатывают водород и на примере Солнца, у которого это соотношение составляет уже 70% к 29%, наблюдать данный процесс удобнее всего.


    2. Среди интересных фактов о звездах в космосе - баланс их процессов. На самом деле гравитация заставляет небесное тело втягиваться само в себя, значительно уменьшаясь в размерах, и длиться это могло бы миллионы лет, пока в объеме бы они не стали все похожи на нейтронные звезды, если бы не свет. Благодаря постоянной термоядерной реакции он вырабатывается и исходит из самого центра светила, проходя через него тысячи лет, действуя как сопротивление гравитации.


    3. Наибольшее число среди звезд занимают красные карлики. Они, как правило, вдвое меньше нашего Солнца и вырабатывают соответственно небольшое количество энергии – около 0,00001 от возможностей нашего светила. Их называют неудавшимися, неполноценными и внутреннего запаса гидрогена им хватает лишь на 10 триллионов лет.


    4. Интересный факт о звездах на небе. Мы привыкли думать, что голубое свечение холодное, а оранжевый и красный свет в свою очередь больше похожи на источники тепла. Но на самом деле именно огненно-красные светила имеют минимальную температуру – не более 3,600 по Кельвину, а голубые максимальную – до 12.000 по Кельвину.


    5. На первый взгляд кажется, что каждая звезда сама по себе. Но встречаются те, которые образуют пары, имея при этом общий гравитационный центр. Но и это не предел, ученые нашли и три, и четыре небесных тела соединенных в одну систему. Стоит только представить, что вместо одного Солнца мы могли бы иметь четыре.


    6. Самой большой планетой в нашей системе является Сатурн, он поистине огромен, но есть светила, что могли бы его поглотить собой. Их называют супергигантами и один из наиболее известных – это Бетельгейзе, он в 1000 раз больше нашего Солнца. Однако и это не предел, ведь наиболее огромным принято считать VY Большого Пса, который вдвое больше самого Бетельгейзе.


    7. Интересный факт о планетах и звездах, если бы вместо нашего Солнца было нечто чуть горячее, за несколько миллионов лет Меркурий бы просто обратился в пар.


    8. Небольшие небесные светила заканчивают свое существование, образуя белые карлики, и гиганты в свою очередь оставляют после себя черные дыры.


    9. Несмотря на немыслимое число газообразных гигантов, что нас окружают, все они находятся очень и очень далеко. Ближайший к нам называется Проксима Центавра и до него от Земли около четырех с половиной световых лет. То есть луч света сможет преодолеть это расстояние за такое время, что же касается человека, то на самом невероятно быстром космическом корабле ему бы понадобилось не менее 70 тысяч лет, что делает путешествия между светилами просто невозможным на данный момент.


    10. Сколько всего звезд существует? Вычислить это крайне сложно, а может даже невозможно, ведь лишь в нашей галактике их число в среднем составляет 300 миллиардов. А всего галактик может быть 500 миллиардов и в каждой примерно столько же газообразных гигантов, что делает суммарное число довольно пугающим.